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Preface

This report contains the 1998 annual progress reports of the postdoctoral Fel-
Jows and visiting scholars of the Center for Turbulence Research. It sumimarizes
the research efforts undertaken under the core CTR program. In addition, earlier
this year a report containing the proceedings of the 1998 CTR Summer Program
was distributed. These reports and other CTR publications are available on the
World Wide Web (http://www-fpc.stanford.edu/CTR). Last year, CTR sponsored
eighteen resident Postdoctoral Fellows, seven Research Associates, one Research
Engineer, three Senior Research Fellows, hosted fifteen short term visitors, and
supported two doctoral students.

For over a decade CTR'’s core funding has been provided by NASA Ames Research
Center; last year NASA Langley Research Center and NASA Lewis Research Center
joined Ames in supporting CTR. We view this as a positive development and hope
for it to continue in the future, and as a result expect to have more direct interactions
with the technical staff at Langley and Lewis. Turbulence is a major problem for all
of NASA; CTR provides the critical mass needed to address different aspects of this
important problem for aerospace technology by attracting researchers worldwide.
CTR also provides technical and infrastructure support for an extensive array of
programs supported by the U.S. Department of Defense and Department of Energy
at Stanford University. The combination of all these activities has provided a unique
environment for turbulence research at CTR.

The reports in this volume are collected into four groups. The first group deals
with turbulent combustion where modeling efforts in the Reynolds Averaged Navier
Stokes (RANS) and large eddy simulation (LES) techniques are described. New
efforts in numerical methodology for turbulent flows with combustion and a new
experimental activity for validation of the numerical studies are described. The
second group begins with a technical report on CTR’s new efforts in simulation and
understanding of Hall thrusters, a propulsion engine used for satellite maneuvering.
This is part of a new research activity for CTR where the tools developed for
prediction of turbulent flows are applied to other areas such as plasma simulations.
The remaining reports in this group include an account of progress in using LES
for prediction of flow generated noise and new efforts for prediction of transition
with application to turbomachinery. The RANS activity, presented in the third
group, continues to play a major role in CTR’s core program. The list of flows
where CTR’s V2F model has been successfully applied was extended to transonic
flows with shocks. In addition, our renewed interest in turbomachinery flows has
motivated our investigation and development of RANS for heat transfer prediction.
The V2F model has now been incorporated in several major NASA codes as well
as other widely used CFD codes. Finally, CTR’s effort in LES has focused on the
problem of wall layer modeling for more efficient LES computations and on the
development of high order conservative numerical methods for flows in complex
geometries. These studies are described in the final group of reports in this volume.



We are grateful to Debra Spinks for her skillful compilation of this report and for
her efficient day-to-day management of the Center operations.

Parviz Moin
William C. Reynolds
Nagi N. Mansour
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Direct numerical simulation of turbulent
non-premixed combustion with realistic chemistry

By W. K. Bushe AND R. W. Bilger!

1. Motivation and objectives

Combustion is an important phenomenon in many engineering applications; com-
bustion of hydrocarbons is still by far the most common source of energy in the
world. In virtually every application of combustion processes, the flow in which
the chemical reactions are taking place is turbulent. Furthermore, the combustion
process itself is usually described by a very large system of elementary chemical re-
actions. These chemical kinetic mechanisms are usually extremely stiff and involve,
for long-chain hydrocarbon species, perhaps hundreds of chemical species (which,
if the combustion process is to be completely simulated, implies a need to solve
hundreds of partial differential equations simultaneously). The governing equations
describing the chemical composition are closely coupled to those describing the
turbulent transport. Also, the chemical reaction rates are non-linear and strongly
depend on the instantaneous composition and temperature. For these reasons, a
full understanding of the many processes at work in devices such as furnaces, diesel
engines, and gas turbines has been lacking.

In many devices of interest such as those mentioned above, the combustion takes
place in what is known as the “non-premixed” regime. The fuel and oxidizer are
initially unmixed, and in order for chemical reaction to take place, they must first
mix together. In this regime, the rate at which fuel and oxidizer are consumed
and at which heat and product species are produced is, therefore, to a large extent
controlled by mixing. The nature of such flows lends itself to a particular variety
of models which attempt to take advantage of this. These models describe mixing
based on what is called the “mixture fraction”, or the fraction of fluid which origi-
nated in the fuel stream; they attempt to either describe a steady state flame by a
simple mapping operation—as in fast chemistry models (Bilger, 1980) and laminar
flamelet models (Peters, 1984)—or incorporate reaction rates by expressing them
as functions of the mixture fraction—as in the unsteady laminar flamelet model
of Pitch and Peters (1998), the Conditional Moment Closure (CMC) model pro-
posed independently by Klimenko (1990) and Bilger (1993a,b), and the Conditional
Source-term Estimation (CSE) model of Bushe and Steiner (1998).

Work attempting to improve and validate models for turbulent combustion has
been hampered by a lack of adequate experimental results. Experimental methods
which might provide the necessary insight are also extremely expensive, difficult to
perform, and still quite limited in the information they provide. Direct Numerical
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Simulation (DNS) of the governing equations offers an alternative to experiments;
however, such simulations are limited by available computer resources. Previous
simulations have either been limited to extremely simple chemical kinetic mecha-
nisms (Vervisch, 1992; Chen, et al., 1992) or to two-dimensional flows (Smith, 1996;
Chen & Echekki, 1996).

With the advent of new techniques for the systematic reduction of chemical kinetic
mechanisms, new reduced kinetic mechanisms are now available which are still rela-
tively simple but which retain sufficient complexity from the original mechanism to
provide good predictions of flame structure and reaction rates. In a previous study
which implements such a reduced mechanism in DNS (Swaminathan & Bilger, 1997
& 1998a), the flow was assumed to be incompressible so that effects of heat release
on the flow were neglected. While the results of this study have been encourag-
ing, validation of the CMC method against this constant property DNS data is not
completely convincing. There is clearly a need to obtain DNS data using realistic
chemical kinetics in turbulence where effects of the heat release on the flow are
included.

In the present study, a reduced kinetic mechanism has been incorporated into a
fully compressible DNS code. The results of the simulations will be used for the
validation and, hopefully, improvement of current combustion models such as those
mentioned above.

2. Accomplishments

2.1 Chemistry

The chemical kinetic mechanism that was used in the simulations is one repre-
sentative of the oxidation of a methane/nitrogen mixture by an oxygen/nitrogen
mixture. There are three reactions in the mechanism; the first two represent the
oxidation of the methane (Williams, 1991), and the third represents the formation
of nitric oxide and was obtained by putting the Oxygen free radical in the simple
Zel’dovich into partial equilibrium. The reactions are:

Fuel + Ozi — Int + Prod (I
Int + Ozt — 2Prod (I1)
N2 + Ozi — 2NO (111)

where Fuel is CHy, Oziis Oy, Int is (%Hg + %CO), and Prod is (%HgO + %CO;).
In order to reduce computational costs and to make the mechanism more tractable
for modeling purposes, the reaction rate expressions were simplified. The chemical
kinetic mechanism was incorporated into a DNS code which solves the governing
equations for fully compressible turbulent flow (Ruetsch et al., 1995), based on the
algorithms of Lele (1992) and Poinsot and Lele (1992). The implementation of the
mechanism was thoroughly tested in one- and two-dimensional simulations; this
work was described previously (Bushe et al., 1997) and will not be discussed here.
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2.2 Three-dimensional simulations

Having tested the implementation of the chemical kinetic mechanism and hav-
ing established that simulation with turbulence was possible, a series of three-
dimensional simulations were undertaken. Several limitations on initial and bound-
ary conditions had been established in the two-dimensional tests.

For the simulation results to be useful for the purpose of model validation, it
was clear that the bulk pressure in the domain would have to remain constant. In
order to ensure this, fluid had to be allowed to leave the domain; therefore, it was
necessary to use partially non-reflecting outflow boundary conditions (Poinsot &
Lele, 1992) for at least one boundary. An additional constraint was then that the
reaction rates at any such a boundary was required to be zero; otherwise, these
boundary conditions become ill-posed. Also, because the chemical kinetic rates
depend on the hydrogen free radical concentration, the mechanism cannot auto-
ignite; therefore, the fields had to be initialized such that at least some chemical
reaction is already underway.

The species mass fractions were initialized in the one-dimensional simulations by
first defining the mixture fraction as a linear combination of mass fractions such
that the chemical source term in its transport equation is zero:

60YFuet — 60Y0zi — 36Yprod — 32YNO + 18
Z = 5 : 1)

The mixture fraction was initialized with the analytical solution to the diffusion
equation for a semi-infinite slab of fuel mixing with a semi-infinite slab of oxidizer,

Z(z,t) = erf (—\/:_—Dt_—) , (2)

at an arbitrary time, chosen such that the reaction zone would be sufficiently re-
solved with the available number of grid points. Mass fractions for each species were
then calculated by assuming that an arbitrary fraction of moles for each of reaction I
and II had reacted to completion. This assumption also allowed for the calculation
of the heat released as a function of mixture fraction, from which the temperature
field can be calculated. The initial velocity was zero, and both boundaries in the
one-dimensional simulations allowed for partially reflecting out-flow.

The mass fraction, temperature, density, and velocity fields for the three-dimen-
sional simulations were then initialized by using a stabilized one-dimensional flame
solution. By placing a stable flame in the middle of the three-dimensional domain,
the time until the reaction zone (the region of the flow in which chemical reaction
takes place) reached a boundary could hopefully be maximized. The placement of
the flame is depicted in Fig. 1.

Initial turbulent velocity fluctuations were obtained by using a pseudo-spectral
code (Ruetsch & Maxey, 1991) to solve the governing equations for incompressible
flow and forcing a periodic, three-dimensional flow field on a 120% grid from quies-
cence until its statistics became stationary. Two identical 120° boxes were placed
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- - out-flow

FIGURE 1. Depiction of initial flame placement.

next to each other to fill out the 120 x 120 x 240 domain; periodic boundary con-
ditions were retained for the y and = directions and out-flow boundaries used in
the = direction as shown in Fig. 1. The turbulent fluctuations near the out-flow
boundaries were filtered to zero to avoid potential generation of unphysical vortic-
ity. The incompressible turbulent fluctuations were taken to be fluctuations in the
momentum; thus, the turbulent velocity was divided by the density so as to satisfy

B(pus)
Jz;

=0,

in the initial field. The resulting turbulent velocity field was added to the velocity
field induced by dilatation in the one-dimensional flame.

2.8 Results

Six sets of data have been produced. Two simulations were run for 90 time units,
and the remainder were run only for 20 time units. These additional simulations
were run to provide a larger ensemble of points from which to extract statistics.
In each simulation the same initial flame was used, but the initial velocity field
was either shifted or rotated such that the flame saw the same velocity field in
a statistical sense but underwent a very different evolution. In all cases, data
was stored for every 2.5 non-dimensional time units so that the evolution of the
flow and scalar fields could be studied. The data stored included the density, the
temperature, the mass fractions of Fuel, Oxidizer, Intermediate, Product and NO,
and the velocity in each direction for every point in the domain.

2.8.1 Visualization of slices

In Figs. 2-4, eight different properties are visualized for a single plane oriented
normal to the flame brush. These figures show the properties taken from one sim-
ulation at three different times (7.5, 15.0, and 30.0 time units). The properties
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shown are summarized in Table 1, along with a legend to the colors in Figs. 2-4.
The minima and maxima of the properties are kept the same for all three figures to
allow direct comparison between them. Superimposed on these plots are isopleths
of mixture fraction. The black lines are spaced at intervals of mixture fraction of
0.1, and the white line is the isopleth of the stoichiometric mixture fraction of 1 /3.
The gas at the right-hand edge of the figures is pure fuel (where the mixture fraction
has a value of unity), and the gas at the left-hand edge of the figures is pure oxidizer
(where the mixture fraction has a value of zero).

sub-figure Property Minimum (white) Maximum (black)
a X 0 0.0125
b T 300K 2000K
c Yint 0 0.032
d Yu 0 0.0024
e wi 0 6.5 x10°°
f Wi 0 6.0 x 10°°
g Yno 0 1.4 x107%
h WILI 0 23 x10~°

Table 1. Legend for Figs. 2, 3, and 4.

In Fig. 2, there is a peak in scalar dissipation evident, which coincides with
a saddle point in the temperature. There is considerable fine-scale structure in
the scalar dissipation. In the middle of the slice, there is a fairly large region in
which the scalar dissipation along the stoichiometric isopleth is very low; it is in
this region where the temperature is a maximum. This region also coincides with
the maximum production rate of Nitric Oxide. Furthermore, the Intermediate and
Nitric Oxide mass fractions also peak here. The Hydrogen radical, however, peaks
in a region of moderately high scalar dissipation. Neither of reactions I or IT show
any sign of local extinction at this early time in the simulation; however, there are
in both reaction rates double peaks, which may indicate turbulent structure within
the reaction zone, although it is more likely a consequence of out-of-plane folding.
Regardless, it would be difficult to describe the flame shown in this figure as being
locally one-dimensional.

In Fig. 3, the peak in scalar dissipation which was apparent in Fig. 2 has become
larger in magnitude and has been transported by the flow. The scalar dissipation
still exhibits fine-scale structure. The saddle point in the temperature still coin-
cides with the peak in scalar dissipation and has become deeper. The region of
low scalar dissipation where the temperature is high has become larger, and the
maximum temperature is slightly higher here. The Intermediate and Nitric Oxide
mass fractions as well as the Nitric Oxide production rate all peak in this region.
Interestingly, the Intermediate species mass fraction nearly vanishes at the location
of the peak in scalar dissipation, as does the mass fraction of the Hydrogen radical,
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(b)

(4)

(f)

(k)

FIGURE 2. Visualization of properties on a slice through the three-dimensional
domain after 7.5 acoustic time units: a) Scalar dissipation, b) Temperature, ¢) Mass
fraction of Intermediate, d) Mass fraction of Hydrogen radical, d) Reaction rate I,
e) Reaction rate II, f) Mass fraction of Nitric Oxide, g) Reaction rate III. See Table 1

for legend.
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(b)

(d)

(f)

(h)

FIGURE 3. Visualization of same properties shown in Fig. 2 after 15.0 acoustic
time units. See Table 1 for legend.
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FIGURE 4. Visualization of same properties shown in Fig. 2 after 30.0 acoustic
time units. See Table 1 for legend.
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even along the stoichiometric isopleth of mixture fraction. This, coupled with the
low temperature at this spot, has the effect of extinguishing the rates of reactions I
and II; that is, the local reaction rates are more than an order of magnitude lower
than they are at other locations with the same stoichiometry; this is what is known
as local extinction. At this later time, reaction I is significant in a very broad region
in space where the scalar dissipation is low (that the scalar dissipation is low here
indicates that this is not merely a consequence of out-of-plane folding); furthermore,
there is also a pocket of unreacting gas surrounded by reacting gas.

In Fig. 4, the peak in the scalar dissipation has been convected further to the
right, but the peak is lower in magnitude. The structure in the scalar dissipation
field is starting to exhibit somewhat larger scales than was seen at the earlier times.
The temperature field still peaks in a region of very low scalar dissipation, and
the saddle point in temperature associated with the peak in scalar dissipation has
become even lower. The Intermediate mass fraction and the rate of reaction II are
both very low in this region, and the Hydrogen radical mass fraction and rates of
reactions I and III are all negligibly small. Peaks in the Nitric Oxide mass fraction
are at the same locations as peaks in the rate of reaction III; these coincide with
peaks in the temperature.

2.8.2 Scatter plots

Figure 5 gives scatter plots of the scalar dissipation, temperature, and mass frac-
tions of Oxidizer, Fuel, Intermediate, and Hydrogen radical as functions of the
mixture fraction for the simulation discussed above at a time of 15.0 time units.
The scalar dissipation shows considerable scatter with a peak at a mixture fraction
around 0.5. The peak scalar dissipation in the turbulent flow at this time is over
200 times the peak in the original laminar flow. In the plots of the temperature and
the Fuel, Oxidizer, Intermediate, and Hydrogen radical mass fractions, the laminar
flame with which the simulation was initialized is superimposed on the scatter plots.
Most of the points in the temperature scatter plot lie below the initial flame, which
is an effect of the increased scalar dissipation caused by turbulent mixing. Almost
all of the points in the oxidizer and fuel mass fractions are higher above the curves
of the initial flame, as are most of the points in the Hydrogen radical mass fraction
plot. In this last plot, however, there are still a few points below the laminar flame
curve; these are points that lie in regions of local extinction such as that discussed
above. The Intermediate species mass fraction exhibits the most scatter of the mass
fraction plots; however, the bulk of the points lie close to the laminar flame curve.

2.8.8 Turbulence statistics

While the field used to initialize the velocity in the turbulent simulations came
from an isotropic simulation, the mixture fraction was initialized with an anisotropic
field, and the turbulent velocity fluctuations were adjusted using the initial laminar
flame density. Also, the viscosity was taken to be a function of the temperature,
and the temperature had, as seen in the previous section, substantial variation even
as a function of mixture fraction. Therefore, the initial velocity field was strongly
anisotropic in the direction across the layer. As such it is difficult to describe the
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FIGURE 5. Scatter plots of a) Scalar dissipation, b) Temperature, c) Mass fraction
of Oxidizer, d) Mass fraction of Fuel, e) Mass fraction of Intermediate and f) Mass
fraction of hydrogen radical. Solid lines are initial laminar flame profiles.
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characteristics of the flow using statistics. In order to examine the characteristics of
the flow field, statistics were taken on planes normal to the direction of anisotropy
in the mixture fraction field; that is, properties were averaged together on planes
normal to the ¢ direction. One unfortunate consequence of this is that there are
only 1202 points on each plane, which may mean that the statistics on these planes

are not properly converged.
The Taylor microscale is defined by Tennekes and Lumley (1992) as

10-7-k

N

where v = % is the Favre averaged kinematic viscosity,

pui — @i )(u; — i)
2p

k=

is the Favre averaged turbulent kinetic energy, and

Ou; Bu; du;
e prda? N Tciid
pv (8:,- 3::.-) Az,

€=

p

is the Favre averaged dissipation rate of turbulent kinetic energy (Hinze, 1975). The
Reynolds number based on the Taylor microscale is

This is shown as a function of z in Fig. 6 for several times: the initial condition is
shown, as are those times for which visualizations were given in section 2.3.1 (7.5,
15 and 30 acoustic time units) along with the last time for which data is available
at 90.0 acoustic time units.

The Taylor scale Reynolds number was initially around 60 in the cold fluid; how-
ever, the higher viscosity reduced this to only 20 in the flame. The effect of filtering
the velocity fluctuations to zero at the outflow boundaries is apparent in that the
Reynolds number drops dramatically to zero at the boundaries in the initial field.
The diffusive nature of turbulence and the dilatation caused by heat release in
the middle of the domain change this very quickly—by 7.5 time units; the Reynolds
number at the boundaries rose to around 20. While a Taylor scale Reynolds number
of 20 is very low, it can still be taken as an indication that there is turbulent motion
present; this is roughly the Reynolds number of the turbulence in the reaction zone
for all but the latest time shown.

The Kolmogorov length scale, which is

)1/4

o

BN S



14 W. K. Bushe & R. W. Bilger

FIGURE 6. Favre averaged Taylor Reynolds number on planes of constant z
through the mixing layer: t=00; ——1t =75 —e—1t =150; ---- ¢t =
30.0; oo t = 90.0.

is shown in Fig. 7. This is initially almost constant in the domain except at the
edges, where the dissipation is zero because the velocity fluctuations have been
filtered out (this is why the Kolmogorov length shoots up to infinity at the edges).
The Kolmogorov length in the middle of the domain, where the heat is released,
rises with time much faster than it does at the edges of the domain. Initially the
Kolmogorov length is somewhat smaller than the grid spacing (0.067) and this gets
larger with time; this indicates that the turbulence was adequately resolved on the
grid throughout the simulation.

The initial turbulent flow field did not exhibit any inertial range in its spectrum
so it would be inappropriate to consider the integral length scale of the flow field.
Instead, the dissipation length and time scales were examined. The dissipation

length is
"3

U
ldiss = ="
€
and the dissipation time is
ldiss
tdiss = TRE
u

where u" = %’: . These are shown in Fig. 8. The dissipation length is initially
around 0.8L in the middle of the domain and just over 2.5L in the cold fluid near
the edges; it is zero at the boundaries, but this is again due to the filtering of

the fluctuations there. In time, the dissipation length appears to decay to around
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FIGURE 7. Favre averaged Kolmogorov length on planes of constant z through
the mixing layer: t =00, ——1t =175 ——1t=150;----t = 300
........ + = 90.0.

0.7L throughout the domain. The dissipation time is initially very low—around
9 acoustic time units—in the middle of the domain, but exceeds 50 in the cold
fluid. In time, the dissipation time increases to around 25 acoustic time units in the
middle of the domain but remains around 45 at the edges. The dissipation length
in the middle of the domain is initially about one order of magnitude larger than
the Kolmogorov length. Only at 90 time units do these lengths become comparable.
This is further evidence that the flow is turbulent albeit not very vigorous given the
fairly long dissipation times.

The Favre averaged scalar dissipation is shown in Fig. 9a. Clearly, in the presence
of turbulence the mean scalar dissipation is considerably larger in magnitude than
the initial, laminar profile. The peak in scalar dissipation is at 7.5 time units
and this decays slowly. Only when the turbulence has effectively decayed away,
evidenced by the low Reynolds number, does the mean scalar dissipation return to
near the initial laminar curve.

The Favre average of the temperature is shown in Fig. 9b. The peak mean
temperature drops abruptly in the presence of turbulence; this is likely due more
to the variance of mixture fraction that results from large scale mixing than to
local changes in the flame. The peak mean temperature never approaches that
of the initial curve although the increase in the area under the mean temperature
curve with time indicates that the reactions are still clearly proceeding in earnest
throughout the run.
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FIGURE 8. Favre averaged dissipation length {a) and time (b) on planes of
constant  through the mixing layer: t =00, ——t =75 ——1t=15.0;
ceom £ =30.0; - t = 90.0.
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FIGURE 9.  Favre averaged scalar dissipation rate (a) and temperature (b) on
planes of constant z through the mixing layer: t=00; ——1t="75 —o—

t=15.0; ———= t = 30.0; - t = 90.0.

2.5.4 Conditional reaction rates

In Fig. 10, the conditional averages of the reaction rates are compared to those
predicted by evaluating the reaction rates with the conditionally averaged mass
fractions, temperature, and density in the entire domain at 15 acoustic time units.
This is a test of the validity of the first order CMC hypothesis, which is used to
obtain closure for the chemical source terms in both the CMC and CSE approaches.
The reaction rates for reactions I and II are predicted to within 5%. However, the
under-prediction of reaction III is substantial—over 25%.
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FIGURE 10. Comparison of conditionally averaged reaction rates to reaction rates
predicted using the first order CMC approximation at 15 time units:

(a) Awr(Y5, THZ = n); - , wi(Qu, (T|Z =n));
(b) — , {wrr(Y5, T)Z = n); - ,wirn(Qy,(T1Z = n));
(c) A@r(Ys, THZ =n); ,wii(Qu,(T|Z = n)).

2.4 Discussion

Several interesting findings are seen in the previous section. These will now be
discussed in greater detail.

2.4.1 Eztinction effect

Non-premixed flames can be thought of as a competition between local chemical
reaction and local mixing. At low values of local scalar dissipation (which is a direct
measure for the rate of mixing), the reactions which consume fuel and oxidizer
are limited by the mixing rate. As the local scalar dissipation increases, these
chemical reaction rates will increase. When the local scalar dissipation rate becomes
very large, the rate of diffusion of heat away from the reaction zone, the region of
space in which chemical reaction is taking place, becomes large and can exceed the
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rate at which chemical reaction replenishes that heat; the local temperature goes
down. Since virtually all chemical reaction rates in flames are strongly temperature
dependent, the reaction rates are slowed. If the high scalar dissipation persists
for a sufficiently long time, these reactions can become quenched. Once this has
occurred, even if the scalar dissipation subsides, the reaction rates will not recover,
and re-ignition occurs either by a premixed front originating from non-extinguished
gas adjacent to the region of local extinction or by auto-ignition.

This local extinction phenomenon is clearly evident in the sequence of Figs. 2-4.
At 7.5 time units, the scalar dissipation peaks at a location where the temperature
reaches a local saddle point, and yet reaction rates I and II are significant at the
same location. It is only at 15.0 time units that these reaction rates appear to be
quenched.

At this time, however, it is not yet clear whether the extinction events seen in the
database are genuinely a result of low-temperature quenching of the reaction rates
or an effect of the form of the steady-state expression for the Hydrogen radical.
The form used contains an exponential term which is a surrogate for a sharp cut-
off function of YF,/Yoxi- It is conceivable that the extinction events were caused
by depletion of the Hydrogen radical and that the low local temperatures are a
consequence of extinction rather than the cause. This shall remain a question for
future work.

2.4.2 Edge-flames

It is interesting to note that the flames at the edges of the extinction event seen in
Figs. 3 and 4 do not exhibit triple flame structure. This was investigated carefully—
where colormaps for the plots were manipulated so as to highlight even very low
reaction rates—and found to be true for all of the times at which data was ana-
lyzed. It has not yet been possible to search through the fields at later times to
establish if this is a persistent phenomenon. Furthermore, given the possibility that
the extinction events may be caused by Hydrogen radical depletion rather than
low-temperature quenching, it is possible that the lack of premixed branches is a
consequence of the form of the reaction rates. In earlier simulations using different
initial conditions (with the same chemical kinetic mechanism), premixed branches
of triple flames were clearly evident; thus this seems an unlikely explanation. Alter-
natively, the lack of premixed branches on the edges of the reaction zones may be
an indicator that the edge-flames are receding or that the local scalar dissipation
is still so high that the premixed branches ordinarily associated with triple-fames
have merged with the diffusion branch (Vervisch & Trouvé, 1998). This, too, will
remain a question for future work.

2.4.3 NO production

It is also interesting to note the correlation between production of Nitric Oxide
and peak temperature. Given the very large activation energy of this reaction, it
would be expected that it would be sensitive to temperature. It also appears to be
sensitive to the mass fraction of the Hydrogen radical.
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2.4.4 Scatter plots

One important effect of the local extinction phenomenon is to cause considerable
scatter in the scalar fields. This could pose considerable difficulty to moment closure
methods such as CMC or CSE; conditional averages of most of the properties shown
in Fig. 5 would fail to represent the wide scatter, and the mean reaction rates,
which are highly sensitive non-linear functions of the scalar fields, would not be well
represented by the first moment CMC closure hypothesis. Thus, local extinction
phenomena, in particular their effect on scatter in the scalar fields, would likely
necessitate either adding an additional conditioning variable to account for the
physical process at the root of the scatter—such as the scalar dissipation—or the
use of a second moment closure.

2.4.5 Favre averaged statistics

The Favre averages make clear the fact that the turbulent flow field is substan-
tially influenced by the presence of the flame. This is true in the initial field as
evidenced by the strong spatial dependence of the Taylor scale Reynolds number.
It is also clear in the Kolmogorov length scale, which is almost constant across
the layer in the initial field, but is almost five times greater in the middle of the
layer, where the temperature peaks, than at the edges of the simulation after 90
time units. While the Kolmogorov length varies more across the layer as time pro-
gresses, the Reynolds number, dissipation length, and time all tend to become more
evenly distributed.

The scalar dissipation and temperature plots (Figs. 9a and 9b) show how mis-
leading mere Favre averages can be. In the scalar dissipation plot, the maximum
mean scalar dissipation is almost one order of magnitude lower than the peak scalar
dissipation seen in the visualizations (Figs. 2-4). If one were using a model that
incorporated scalar dissipation into the prediction of reaction rates, such as CMC or
laminar flamelets, one could conceivably under-predict the significance of extinction
phenomena (which are clearly strongly dependent on scalar dissipation) by using
only the mean scalar dissipation and neglecting fluctuations around that mean.
The temperature plot shows an abrupt drop to around a 1500 K peak temperature,
which is not evident in the visualizations. The drop in the Favre average of temper-
ature appears to be primarily due to the out-of-plane folding across the layer. This
highlights the difficulty in providing closure for the chemical source terms. One
would grossly under-predict the reaction rates if one were to attempt to estimate
these using the Favre averaged values directly.

2.4.6 Implications for modeling

The test of the validity of Conditional Moment Closure for the chemical source
terms is encouraging. It would not be expected that single moment closure using
only mixture fraction as a conditioning variable would give such agreement even in
the presence of the extinction phenomena described above. Indeed, several modi-
fications to the method have been proposed in order to improve closure for cases
where extinction might occur. These include the addition of other conditioning
variables (as in Bilger, 1991 and Bushe & Steiner, 1998) or the use of conditional
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variances (as in Li & Bilger, 1993; Kronenburg et al., 1998; Swaminathan & Bilger,
1998b).

While the closure appears to work well for two of the reactions, it appears to
break down for the slower pollutant formation step. Since the activation energy of
the Nitric Oxide formation reaction is very large, it is quite sensitive to variations
in temperature. The considerable scatter in the temperature evident in Fig. 5b has
a significant impact on this reaction. This indicates that a higher moment closure
might be necessary although the potential to use scalar dissipation, with which
variations in temperature appear to correlate strongly, as a second conditioning
variable might improve closure as well.

3. Future work

Several issues remain to be addressed. A more detailed analysis of the affect of
heat release on the flow field is needed so as to better describe the interaction of
the flow with the chemical reactions. Further research into the edge flames present
after extinction events will also be needed to attempt to establish the parameters
which control whether or not triple lames form.

Ultimately, however, the purpose of the database was originally intended to be
the validation of modeling, and it is this direction that attention will be focused in
the near future. Already, the database has been used in a priori tests of models.
Beyond the comparisons shown herewith, Cook and Bushe (1998) have used the
database to test a new model for scalar dissipation for use in LES. The data is also
being used to test the CSE approach in a RANS context. Model validation work is
going to continue; in particular, a priori tests of the CSE approach for LES will be
conducted and statistics relevant to second moment CMC closure will be extracted.

Acknowledgments
The authors wish to thank G. R. Ruetsch for providing the codes used in the de-
velopment of this database. R. W. B. gratefully acknowledges the financial support

of the Australian Research Council. The simulations were performed at the NAS
facility of the NASA Ames Research Center.

REFERENCES

BILGER, R. W. 1980 Nonpremixed turbulent reacting flows. Topics in Applied
Physics. 44, Springer-Verlag, 65.

BILGER, R. W. 1991 Conditional moment methods for turbulent reacting flow us-
ing Crocco variable conditions. Charles Kolling Laboratory Report, Department
of Mechanical Engineering, The University of Sydney, TN F-99

BILGER, R. W. 1993a Conditional moment closure for turbulent reacting flow.
Phys. Fluids A. 5(2), 436.

BILGER, R. W. 1993b Conditional moment closure modeling and advanced laser
measurements. In Turbulence and Molecular Processes in Combustion, T. Ta-

keno (Ed), Elsevier, 267.



DNS of turbulent non-premized combustion 21

Buskg, W. K., BILGER, R. W. AND RUETSCH, G. R. 1997 Incorporating re-
alistic chemistry into direct numerical simulations of turbulent non-premixed
combustion. Annual Research Briefs, Center for Turbulence Research, NASA
Ames/Stanford Univ., 195.

BuSHE, W. K. AND STEINER, H. 1998 Conditional Moment Closure for Large
Eddy Simulation of non-premixed turbulent reacting flows. CTR Manuscript
170, Center for Turbulence Research, NASA Ames/Stanford Univ.

CHEN, J. H., MAHALINGAM, S., PURI, I. K. AND VERVISCH, L. 1992 Effect of
finite- rate chemistry and unequa.l Schmidt numbers on turbulent non-premixed
flames modeled with single-step chemistry. Proceedings of the 1992 Summer
Program, Center for Turbulence Research, NASA Ames/Stanford University,
367.

CHEN, J. H. AND ECHEKKI, T. 1996 Unsteady strain rate and curvature effects
in turbulent premixed methane-air flames. Combust. & Flame. 106, 184.

CoOK, A. AND BUsHE, W. K. 1998 A subgrid-scale model for the scalar dissi-
pation rate in nonpremixed combustion. Proceedings of the 1998 Summer Pro-
gram, Center for Turbulence Research, NASA Ames/Stanford University, to
appear.

Hinze, J. O. 1975 Turbulence, McGraw-Hill.

KLIMENKO, A. Y. 1990 Multicomponent diffusion of various admixtures in turbu-
lent flow. Fluid Dynemics. 25, 327.

KRONENBURG, A., BILGER, R. W. AND KENT, J. H. 1998 Second order Condi-
tional Moment Closure for turbulent jet diffusion flames. Twenty-seventh Sym-
posium (International) on Combustion, The Combustion Institute, Pittsburgh,
PA (to appear).

LELE, S. 1992 Compact finite difference schemes with spectral-like resolution. J.
Comp. Phys. 103, 16.

L1, J. D. AND BILGER, R. W. 1993 Measurement and prediction of the conditional
variance in a turbulent reactive-scalar mixing layer. Phys. Fluids A. 5, 12, 3255.

PETERS, N. 1984 Laminar diffusion flamelet models. Prog. Energy Combust. Sci.
10, 319.

PrrscH, H., AND PETERs, N. 1998 A Consistent Flamelet Formulation for Non-
Premlxed Combustion Considering Differential Diffusion Effects. Combust. &
Flame. 114, 26.

PoiNsoT, T., AND LELE, S. 1992 Boundary conditions for direct simulations of
compressible viscous flows. J. Comp. Phys. 101, 104.

RUETSCH, G. R., AND MAXEY, M. R. 1991 Small-scale features of the vorticity
and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids. 3,
1587.

RUETSCH, G. R., VERVISCH, L., AND LINAN, A. 1995 Effects of heat release on
triple lames. Phys. Fluids. 7, 1447.



22 W. K. Bushe & R. W. Bilger

SMITH, N. A. S. 1996 Conditional moment closure of mixing and reaction in turbu-
lent nonpremixed combustion. Annual Research Briefs, Center for Turbulence

Research, NASA Ames/Stanford Univ., 85.

SWAMINATHAN, N. AND BILGER, R. W. 1997 Direct numerical simulation of tur-
bulent nonpremixed hydrocarbon reaction zones using a two-step reduced mech-

anism. Comb. Sci. & Tech. 127, 167.

SWAMINATHAN, N. AND BILGER, R. W. 1998a Assessment of combustion sub-
models for turbulent nonpremixed hydrocarbon flames. Combust. & Flame. In
press).

SWAMINATHAN, N. AND BILGER R. W. 1998b Conditional variance equation and
its analysis. Twenty-seventh Symposium (International) on Combustion, The
Combustion Institute, Pittsburgh, PA (to appear).

TENNEKES, H. AND LUMLEY, J. L. 1992 A First Course in Turbulence, MIT
Press.

VERVISCH, L. 1992 Study and modeling of finite rate chemistry effects in turbulent
non-premixed flames. Annual Research Briefs, Center for Turbulence Research,
NASA Ames/Stanford Univ., 411.

VERVISCH, L. AND TROUVE, A. 1998 LES modeling for lifted turbulent jet flames.

Proceedings of the 1998 Summer Program, Center for Turbulence Research,
NASA Ames/Stanford Univ., (to appear).

WILLIAMS, F. A. 1991 Overview of asymptotics for methane flames, in Reduced
Kinetic Mechanism and Asymptotic Approzimations for Methane-Air Flames,
Springer-Verlag, New York, 68.



Center for Turbulence Research 23
Annual Research Briefs 1998

LES of non-premixed turbulent reacting flows
with Conditional Source term Estimation

By H. Steiner AND W. K. Bushe

1. Motivation and objectives

In the foreseeable future, Direct Numerical Simulation (DNS), a technique in
which all flow scales are resolved, will remain computationally unaffordable for tur-
bulent reacting flows at technically relevant high Reynolds numbers Thus, Large
Eddy Simulation (LES), which resolves only the large scale motion of the flow while
modeling the contribution of the small (subgrid) scales, has been recognized as a
powerful alternative approach. The LES set of equations is obtained by applying a
spatial filter to the governing transport equations of mass, momentum, and energy.
Several subgrid-scale models for the filtered means of the unresolved turbulent trans-
port of momentum and species have been developed. They range from the widely
used constant-coefficient model of Smagorinsky (1963) to dynamic models where the
model coefficients are computed as functions of the instantaneous flow field (Moin
et al,, 1991; Germano et al., 1991). These dynamic models, which have proven to
be successful in many types of non-reacting flows, are well established tools in LES.
In combusting flows, however, the subgrid-scale modeling of the chemistry is still a
major challenge; our present study is focused on this issue.

In an LES of turbulent reactive flows, a spatial filter is applied to the governing
set of differential conservation equations. Let

f:

NI

be the density weighted (or Favre) filtered representation of some quantity f. Then,
the filtered transport equations for the mass fraction Y; of some species I and
enthalpy h = ¢,T read

apY; oYy 0 [/~ =\ | -
opL | TP [ﬁ(D,+D,)I ’]+w1, (1)

ot 8z; ~ Oz; dz;
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where 7 is the spatially filtered density and &; and ho, are the reactive source term
and the enthalpy of formation of species I, respectively. The turbulent subgrid-scale
fluxes 5

A~ ~ 0Y]
p (uiYI - UiYI) = ﬁDtI‘an
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7 (k- wh) = ﬁfag%
have been modeled in terms of diffusive fluxes involving the corresponding eddy dif-
fusivities Dyy and k;. Subgrid-scale models providing these quantities have already
been mentioned above.

The main challenge faced in modeling combustion is that chemical reaction rates
are usually highly non-linear functions of temperature, density, and species mass
fractions. For a system with N possible species, the K-th chemical reaction can be
written as

N N

1 —_ "
Z nikAs = Z Nk A,
J=1 J=1

where A is the chemical symbol for species J and 7';; and n'j, are the stoichio-
metric coeflicients for species J in reaction K. If M chemical reactions are to be
considered, then the chemical source term for species I becomes (Williams, 1985)

M E N PYJ 2K
wr = Wr Z (nfx — nix)BxT ™ e” RF (m‘) ) (3)
K=1 J=1

where W is the molecular mass of species I, T is the temperature, R is the universal
ideal gas constant, E is the activation energy, and By is the frequency factor. The
power of the pre-exponential term g for reaction K accounts for non-exponential
temperature dependence of the reaction rate. Due to the strong non-linearity of (3),
substituting the filtered temperature, density, and mass fractions into (3), yielding

—

“‘.)_I ~ "‘."I(ﬁa i:‘a YJ),

will generally provide a very poor estimate for the filtered reaction rates. It is
evident that closure for the filtered chemical reaction rates has to be provided. In
non-premixed combustion, where fuel and oxidizer are initially separated and must
mix together before they react, several different approaches have been suggested:

Assuming Fast Chemistry circumvents the estimation of the chemical source
terms. Under this assumption the thermodynamical state is completely determined
as a function of the mixture fraction (Cook & Riley, 1994). However, effects like
ignition and extinction, which may crucially affect many real flames, cannot be ac-
counted for. Fast Chemistry also poorly predicts pollutants whose rates of formation
are kinetically limited.

The Laminar Flamelet model (Peters, 1984; Cook et al., 1997) assumes the flame
structures to be thin in comparison to the turbulent eddies. Within the “laminar
flamelet regime” the flame is considered to be comprised of an ensemble of strained
laminar flames, which themselves merely depend on mixture fraction and scalar
dissipation. Given the filtered means of these two quantities and assuming the shape
of their joint probability density function, the filtered means of the mass fractions
and temperature can be computed. There is still considerable argument on the
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applicability of this method to flames outside the “flamelet regime”. Furthermore,
the chemistry is assumed to be in steady-state; for LES, this implies a quasi-steady-
state assumption neglecting important transient effects on phenomena like ignition
and extinction. In order to overcome this drawback, an unsteady Laminar Flamelet
model has been devised for RANS of combusting flows (Peters, 1997). Thereby, an
unsteady flamelet code is running simultaneously with the CFD code. Receiving the
time dependent thermodynamic state and the scalar dissipation from the CFD code
as inputs, the unsteady flamelet solution yields the actual chemical composition as a
function of mixture fraction. Assuming the shape of the probability density function
for the mixture fraction, the updated chemical composition vector in physical space
can be computed and fed into the CFD code. Whether or not the unsteady Laminar
Flamelet model can also be employed in LES has yet to be investigated. Unlike
unsteady RANS, LES provides a time-accurate solution without periodicity in time.
Thus, the number of unsteady flamelets to be tracked might increase continuously;
in the long run, this could make the LES prohibitively expensive.

The PDF-Transport methods solve a transport equation for the Filtered Joint
Probability Density Function of mass fractions, energy, etc. (Pope 1985; Givi,
1989; Colucci et al., 1998). In the transport equation of the PDF, the chemical
source terms occur in closed form; however, the dimensionality increases with the
number of species, and the unclosed molecular mixing term has to be modeled. The
closure problem for the chemical reaction term has apparently been commuted to
the closure for the molecular mixing.

Recently, Bilger (1993a,1993b) and Klimenko (1990) independently proposed a
new approach for modeling turbulent reacting flows, called Conditional Moment
Closure (CMC). The CMC method solves for the transport equations of condition-
ally averaged quantities instead of their spatially filtered counterparts. Variables
on which the chemical reactions are known to depend on are chosen to be the
conditioning variables. Solving the transport equations also in conditioning space
adds a further dimension to the problem which inhibits the application of CMC to
three-dimensional flow simulations due to its high computational cost.

In the present study the Conditional Source term Estimation (CSE) method
(Bushe & Steiner, 1998) has been proposed as an alternative to the aforementioned
methods for closing the chemical source terms. CSE is based on the CMC hypoth-
esis. However, unlike in traditional CMC methods, it is not necessary to solve the
transport equations in the conditioning space; this makes the method computation-
ally affordable. In its present form the proposed model is devised to provide the
filtered means of the chemical source terms needed to close the LES set of equations
in reacting flows. CSE has proven its predictive capability in an a priori test using
DNS data of turbulent reacting mixing layer, and it is currently being tested in an
LES of a turbulent jet diffusion flame.

2. Accomplishments

2.1 Conditional Source term Estimation (CSE)
CSE is based on the CMC closure hypothesis. In the CMC method proposed
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by Klimenko (1990) and Bilger (1993a, 1993b), the transport equations are condi-
tionally averaged, with the condition being some variable on which the chemical
reaction rates are known to depend.

2.2.1 One condition

In non-premixed combustion far from extinction, the reaction rates mainly de-
pend on mixture fraction. Thus, the mixture fraction is clearly an appropriate con-
ditioning variable. In the context of non-premixed combustion, the mixture fraction
represents the local fraction of mass originating from the feeding fuel stream. Thus,
1t is zero in pure oxidizer and one in pure fuel. In the following the conditional av-
erage of some quantity f, conditional on the mixture fraction Z having some value
¢, will be denoted by an overline:

fl1Z=(f1Z2=¢).

The conditionally averaged reaction term occurring in the conditionally averaged
transport equation for the mass fraction Y; is closed with the first order CMC
hypothesis: the conditional average of the chemical source term of some species
I can be modeled by evaluating the chemical reaction rates using the conditional
averages of the composition vector Yy | Z, temperature T |Z, and density p|Z.
Thus,

oV, T.p) | Z ~ ooy (YK|Z,T|Z,p|Z). (4)

It has been established that the CMC hypothesis, based on a single condition-
ing variable, provides adequate predictions of reaction rates for flames far from
extinction (Bilger, 1993a; Smith 1994). The CSE method makes use of the CMC
hypothesis (4); however, it suggests an alternative way to obtain the conditional av-
erages. Rather than solving the conditionally averaged transport equations, which
would be computationally expensive having the mixture fraction Z as additional di-
mension, it takes advantage of the spatial homogeneity of the conditional averages
on particular surfaces in the reacting flow field. For example, in case of a react-
ing mixing layer, the conditionally averaged quantities show only small variation
on planes normal to the reacting interface. Based on this spatial homogeneity the
“extraction” process of the conditional averages might work as follows: For some
set of m = 1,..., M cells in an LES domain which lie on the surface of homogeneity,
the conditional average of the temperature is invariant in all m cells:

(T|Z)m=T|Z. (5)
The density weighted, filtered temperature in each cell m can be expressed as
1
T, - / Pn(2)T|Z dZ, (6)
0

where Pp,(Z) is the probability density function of the mixture fraction within the
filtered cell m. Eq. (6) is an integral equation—a Fredholm equation of the first
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kind—which, for discrete intervals in Z, can be inverted to yield T|Z. Similar
equations can be written for the density and the mass fractions to obtain p p|Z and
Yx | Z, respectively . Even in the case of non-homogeneity, where (5) does not hold,
the inversion of (6) would still yield an approximation for the conditional average
of the temperature on the surface constituted by the ensemble of m =

..M LES cells. The conditional average of the chemical source terms wy |2
can now be obtained using the CMC hypothesis (4), and the unconditional mean
chemical source term is then

Sim= ' Pu(2) TTZ dz. ()

In this manner, it should be possible to obtain closure for the sub-grid scale mean
reaction rate for any chemical kinetic mechanism. No assumptions have been made
regarding the thickness of the regions in which chemical reactions are significant rel-
ative to the turbulent length scales. Only the assumption of statistical homogeneity
of the conditional averages of temperature, density, and pressure on some surface
must be made. As for the probability density function P, (Z), a f— PDF with the
same mean Z,, and variance Z/2 Z72 of the mixture fraction has proven to approximate
the real PDF appropriately (Bushe & Steiner, 1998). The mean of the mixture frac-
tion Z,, is obtained as a resolved quantity of the LES. The filtered variance 2,2 Z'2 can
be estimated either through a subgrid-scale model, e.g., a Dynamic Model or using
a similarity approach (Jxmenez et al., 1996), or by solving a transport equation for
Z'2, The latter, however, requires modehng of the filtered scalar dissipation

X =2pVZVZ. - (8)

2.2.1 Two conditions

It is known that conditioning only on mixture fraction is insufficient to account for
phenomena such as extinction or ignition. Since the occurrence of these phenomena
depends strongly on the scalar dissipation x, defined in (8), it seems sensible to
introduce scalar dissipation—or some closely related quantity—as the additional
conditioning variable (Bushe, 1995). Assuming for the functional dependence of
scalar dissipation on mixture fraction the shape of the laminar counter-flow solution
(Peters, 1984), the scalar dissipation can be written as

X = x*-exp (—2 [erf_l(Z)]z). (9)

The sufficiently weak dependence of the new random variable x* on the mixture
fraction Z allows expression of the joint probability density function P(Z, x*) as

P(Z,x") = P(Z) P(X"),

where P(Z) again can be approximated as a § — PDF. Analogously to the assump-
tions made for PDF of the scalar dissipation x (Monin & Yaglom, 1975; Eswaran
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& Pope, 1988; Yeung & Pope 1989), the probability density function of x* is taken
to be approximately log-normal as well. In every LES cell m, P,,(x*) is determined
in terms of the filtered mean x*,, and the standard deviation. The first is provided
by the relation

1

y,,,:/olpm(Z) x12dZ =X*,, /0 Po(Z) - exp (-2 [erf_](Z)]Z)dZ, (10)

and the latter is taken to be unity. The rhs of (10) involves again a 3 — PDF
for Pn(Z) and the laminar counter-flow solution. The filtered mean of the scalar
dissipation X,, has to be modeled.

The “extraction” process of the conditional averages is then straightforward. It
is virtually the same as already described for one condition in the previous section.
Inverting the expression

oo 1
T =/ / Prn(Z,x*)T|Z,x* dZ dx*, (11)
0 0

which is equivalent to (6) in the one-condition case, yields the conditionally averaged
quantities needed for the CMC hypothesis now with two conditions:

"‘.)Ilz,)(l‘l = U:J(YA"Z,X',T'Z,X’“,ﬂ'Z,X*)- (12)

The mean chemical source term becomes
Gt = / / Pu(Z,x") G112, dZ dx". (13)
o Jo

2.2.9 Effects of density weighted filtering

Dealing with non-constant density flows the LES set of transport equations (1)-
(2) are solved for the Favre filtered averages of mass fractions and temperature. In
this case the CSE equations have only to be adjusted to the density weighted LES
inputs into the model, the closure hypothesis and the extraction process remain the
same. In terms of density weighted averages (6) and (7) read

1
T =/ Pu(Z2)T|Z dz,
0

Om = P fol f‘m(z)dTI_Z(pl_Z)_1 dz,

respectively, where ﬁm(Z )= P(Z; Zom, Z1?) is the Favre PDF of the mixture frac-
tion, which will again be approximated using the 3-PDF. Its shape is now deter-
mined by the Favre filtered mean and variance of the mixture fraction Z,, and Z"2,
respectively.
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FIGURE 1.  Result of a priori test of integral inversion process to obtain the
conditional averages of: (a) mass fraction of fuel, (b) mass fraction of oxidizer,
(¢) non-dimensional temperature, (d) non-dimensional density; : result of
inversion process, o : DNS value.

2.8 A priori test of the model

In order to test the method described above, the output from several different
time steps in the DNS database of Vervisch (1992) was filtered. The simulation is
of a shear-free, temporal mixing layer with fuel and oxidizer mixing in the presence
of turbulence. The domain was rectangular with 128 points across the layer and 64
points in each direction tangential to the layer. A (16 x 8 x 8)—top-hat filter was
used to compute the spatially filtered means on the LES grid.

The chemical kinetic mechanism used in creating the DNS database was a single
step,

F+0 - P,
with F, O, and P being Fuel, Oxidizer, and Product, respectively. The reaction
rate was 5(1 - 6)
oo 2 - -
w=Dap*YrYo exp (——————1 —a(l _0)) ,
with T T T-T
ad — 40 — 40
= — = \U. = d 9 = ———
o T 08, =8 an To T,
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FIGURE 2. Comparison of reac_tion rate We,: estimated using CSE closure to filtered
reaction rate from DNS data wpys : (a) CSE with one conditioning variable Z,
(b) CSE with two conditioning variables Z and x*.

All temperatures—including Ty (the initial temperature) and T,q4 (the adiabatic
flame temperature at stoichiometric conditions)—were non-dimensionalized with
the reference temperature Tier = (7 — 1) T, and «, the ratio of specific heats, was
taken to be 1.4. The Damkdhler number Da was unity.

The first test was to try to use the quantities Z,, and Z'2 at each point to predict
P..(Z) using the B—PDF as described above and then to substitute 5,,, YFm, YOm,
and T,, and Pn(Z) into (6) to predict the conditional averages. The results of this
a priori test for one time in the simulation (a fairly late time, approximately 1.6
eddy turnover times in the simulation) are shown in Fig. 1, where the results of
the inversion of the integral equation using a simple linear regularization method
is compared to the actual conditional average from the entire flow field. With the
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exception of a slight over-prediction of the maximum temperature, the prediction of
the conditional averages appears to be very good. Similar results have been found
for all other times at which data is available.

The next test is to invoke the CMC hypothesis (4) and use these conditional av-
erages to predict the conditional mean reaction rate w| Z. Then, the unconditional
mean reaction rate is predicted from the prediction of the conditional mean reaction
rate using (7). The estimate W, obtained by this process is compared to the actual
average of the reaction rate wpns in every cell in Fig. 2a. The standard error in the
prediction of the cells where Opns is significant (greater than 1 x 107%) is about
15%. It should be noted that there is some extinction in the DNS database which
cannot be predicted by the single condition version of this method. This is made
evident by the presence of several points where WpNs is very small but West 1s still
significant. These are cells which contain local extinction events. Nevertheless, that
the method is capable of predicting the reaction rates with such accuracy even in
the presence of heat release and extinction seems to be very encouraging.

As was discussed above, adding a second condition to the inversion process is ex-
pected to make the method capable of modeling extinction and ignition phenomena.
This was tested by simply adding the second condition and inverting the two-di-
mensional problem described by (11), using the conditional averages to estimate the
conditional average of the reaction rate (12) and integrating (13). The result of this
process is shown in Fig. 2b. The standard error in the prediction of the cells where
wDNs is significant (again, greater than 1 x 107%) is about 10%. Not only is the
error in the prediction somewhat smaller than was found with only one condition,
the evidence of over-prediction of the reaction rate in cells containing extinction
events is no longer apparent. It seems that the extinction phenomenon is captured
at least to some extent by the inclusion of the second conditioning variable. Thus,
even though the overall improvement of the prediction for the reaction rate at first
sight seems to be rather small, the additional effort of carrying a second condition
variable is still justified: it makes it possible to account for extinction and ignition
phenomena.

Future plans

The CSE model is at present being tested in an LES of turbulent reacting jets.
The code into which the subgrid-scale models have been introduced originally was
written for DNS of non-reacting jets by Boersma (1998a). The first test considers a
piloted jet diffusion flame at Re = 4000; for this basic test case one-step chemistry
is assumed. Preliminary results of this LES showing temperature and fuel mass
fraction contours when looking at the vertical jet from the side are presented in
Fig. 3. Planes of equal distance downstream from the nozzle exit have been assumed
as statistically homogeneous surfaces. The conditional averages have been computed
using the LES filtered means gathered on these planes. The LES results obtained
so far are going to be compared with the corresponding DNS data. These DNS data
will be provided by a DNS performed by Boersma (1998b) for exactly the same test
case. Further test cases will then consider experimentally investigated methane-
air flames with high Reynolds numbers. The first case will deal with a piloted
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7

(a) (b)

FIGURE 3. Results of LES of piloted jet flame: (¢) non-dimensional temperature:
white-black, T/Ty = 1 to 5; (b) mass fraction of fuel: white-black, Yr = 0 to 1.
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jet flame experiment performed in the Sandia Turbulent Diffusion Flame Facility
(Masri et al., 19882,1988b). From these measurements extensive data on chemical
composition and temperature fields are available. Then LES of a lifted methane-air
jet (Muiiz & Mungal, 1997) will be attempted. There, the main challenge will be
to capture ignition effects. Using a second conditioning variable, it is hoped that it
will be possible to obtain a realistic prediction for the flame liftoff heights.
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Measurements of the three-dimensional scalar
dissipation rate in gas-phase planar turbulent jets

By L. K. Su

1. Motivation and objectives

The scalar dissipation rate, x = DVC - VC, where C is a conserved scalar and
D is the scalar diffusivity, is a quantity which is of great interest to models of
turbulent non-premixed combustion. Mathematically, it represents the loss term in
the evolution equation for %C’z, the scalar energy:

a 2 1 2 __ —
(a+u-v—pv)-2-c = _DVC.-VC = —x.

Physically, x can be interpreted as a mixing rate, or equivalently as a rate at which
scalar fluctuations are destroyed. More specifically for combustion applications,
Peters (1983) identified x as a characteristic diffusion time scale, imposed by the
mixing field. Then, local flame extinction could be explained by the scalar dissi-
pation rate exceeding a critical value, thus making the diffusion time smaller than
the chemical time of the local flame structure. Accurate representation of flame
quenching and stabilization poses notable difficulties for diffusion flame computa-
tions, because the scalar dissipation can occur at the finest mixing length scales
of the flow. This means that modeling is required for the scalar dissipation in, for
example, large-eddy simulations (LES) of turbulent combustion, where the filtered
mixture fraction is used as a starting point to describe the combustion.

This study will address two issues regarding the properties of the scalar dissipation
which are of particular significance in the context of combustion. The first concerns
the length scales at which dissipation occurs, in particular their magnitude and
their dependence on Reynolds number. The second issue concerns the scaling of
the mean dissipation values with downstream distance in jet flows. Defining the
thicknesses of the dissipation layers will be of use in determining the resolution
requirements of both DNS and LES computations of turbulent diffusion flames.
Meanwhile, experimental assessment of existing models for the downstream decay
of mean dissipation will provide a fundamental test of our understanding of the
properties of the dissipation rate.

The experimental data used in this study are the planar measurements of the
complete, three-dimensional scalar dissipation rate by Su & Clemens (1998a,b) in
the self-similar region of a gas-phase planar turbulent jet. The data are unique
in providing scalar field information simultaneously in two parallel spatial planes,
with sufficient resolution to permit differentiation in all three spatial dimensions.
Determining the three spatial components explicitly obviates the need to invoke
Taylor’s hypothesis, while the planar nature of the measurement volume allows
direct determination of structural properties of the dissipation field.
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Previous planar measurements of the three-dimensional scalar dissipation at the
smallest scales have been demonstrated in water flows (Southerland & Dahm (1994)).
Some difficulties may arise, however, in applying scalar mixing results in the liq-
uid phase to the gas phase, which is of particular interest in combustion applica-
tions. The Schmidt number (Sc = v/D, where v is the kinematic viscosity and D
the molecular diffusivity) of water is approximately 2000, while in gas-phase flows
Sc ~ 1. From Batchelor (1952), the ratio of the smallest length scales in the ve-
locity and scalar gradient fields in turbulent mixing scales as Sc¢=1/2. Thus, while
in water flows scalar gradients can be sustained on scales roughly 45 times smaller
than the smallest velocity gradient scales, in the gas phase these scales are expected
to be of the same order. It is reasonable to expect that the details of scalar mixing
in the high and low Schmidt number regimes will differ as a result. Results from
analysis of the present gas-phase scalar dissipation data are expected to be directly
applicable to mixing in combustion systems. '

1.1 Ezpressions for the dissipation length scale

Some confusion arises in defining the dissipation length scale in turbulent flows
because different expressions are used. Here we will define the scalar dissipation
length scale as

Ap = A6Re;*/*Sc=1/2, (1)

where 6 is the flow width, Re; is the Reynolds number based on § and a measure
of large-scale velocity, Sc is the Schmidt number, and the constant A is to be
determined. More commonly, this dissipation scale is expressed in the form due to
Kolmogorov and Batchelor. From dimensional arguments, Kolmogorov showed that
the finest turbulence length scale, Ak, should depend on the kinematic viscosity, v,
and mean kinetic energy dissipation rate, ¢, as

Ak = (V3 /e)' /4. (2)

Subsequently, Batchelor introduced the equivalent expression for the scalar dissipa-
tion length scale,

Ag = Mg - Sc /2,

The expressions for Ap and Ap are equivalent to within a constant factor. To show
this, begin by expressing the mean kinetic energy dissipation as ¢ oc U3 /6, were U
and § respectively are measures of the large-scale velocity and flow width. In the
self-similar region of a round jet, Friehe et al. (1971) found

RN

where y is the downstream coordinate, Uy the initial jet velocity, and d the jet nozzle
diameter. To convert to the large-scale variables U and §, we use the relations

U/Us =6.2(y/d)~" and § = 0.37y (e.g. Chen & Rodi (1980)), defining U as the jet
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mean centerline velocity and & as the jet full-width at the 5% points of the velocity
profile. Then, Friehe’s result becomes

U3
e = 0.075 (—-5—) .

Though derived from results for the round jet, this result should be general to all
turbulent shear flows, under the assumption that the small-scale behavior of fully
developed turbulence is universal and is described by the parameters U and 6.

Inserting this result for € into the definition for Ap, and using Res = Ub/v, we
obtain

3
2
Thus the Batchelor scale Ap is equivalent to Ap with a coefficient A = 1.9. The
coefficient 1.9 appearing in these relations results from assuming a proportionality
constant of 1 in the Kolmogorov/Batchelor scale definition. Since that definition
is purely dimensional, there is no reason to expect that the proper proportionality
constant should be 1. Empirical determination of the true value for A is discussed
below (Section 2.2.1).

1/4
Ap = 0.075-1/45( ) Sc1/2 =1.96- Re;*/*Sc1/2, (3)

2. Accomplishments

2.1 Ezperimental conditions

This section presents a brief discussion of the experimental method. A compre-
hensive description can be found in Su & Clemens (1998a,b).

2.1.1 Flow field

The flow considered in these experiments is a planar, turbulent jet of propane
issuing into a slow co-flow of air. The nozzle exit has a slot width A = 1 mm
and spans 150 mm. This aspect ratio is sufficiently high that three-dimensional
effects in the mean flow should be negligible in the flow region of interest, which
extends to 127 h downstream of the exit. The nozzle itself has a contraction ratio
of 75 : 1 to provide a uniform exit velocity profile. Jet exit velocities ranged from
5.9 to 10.7 m/s, while the co-flow velocity was 0.3 m/s. For the planar jet, the jet
exit Reynolds number is insufficient to describe the local turbulence because the
centerline velocity decays as y~1/2 (y is the downstream coordinate) while the jet
grows linearly in y, so the local outer scale Reynolds number, Res, grows as yl/2,
Here, Res was determined using the scalings of Bradbury (1965) and Everitt &
Robins (1978), namely

80.0s = 0.39y (4)

and
U/Uo = 2.4(ps/poo)/*(y/R)™'/?,

and using the kinematic viscosity of air, v = 0.155 cm?/s. For the present mea-
surements, consisting of a total of 906 image pairs, y ranged from 65 to 127 h,
and Res ranged from 3200 to 8400. The binary diffusivity of propane and air is
D = 0.114cm? /s, giving a Schmidt number of 1.36.
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2.1.2 Laser diagnostics

Previous efforts at three-dimensional scalar field imaging in gas-phase flows have
used either simultaneous two-plane Rayleigh scattering (Yip & Long (1986)), or
multi-plane scattering or laser-induced fluorescence (LIF), in which a single laser
sheet is swept through a three-dimensional volume (Yip et al. (1988)). The for-
mer measurements, however, showed somewhat weak signal levels, while the latter
technique suffers from temporal resolution limitations introduced by the laser sheet
scanning.

The current measurements were performed by simultaneous Rayleigh scattering
and LIF in two planes. This approach eliminates temporal skewing effects, while
the high efficiency of LIF yields much higher signal levels for a given amount of laser
energy than two-plane Rayleigh scattering. In fact, only a single, frequency-doubled
Nd:YAG laser was required. Propane was chosen for the jet fluid because its high
index of refraction results in a Rayleigh scattering cross-section over 13 times that
of air. For the LIF, acetone was seeded into the jet fluid to approximately 5% by
volume. The 532 nm output of the laser was split so that 75% was used for the
Rayleigh scattering, while the remainder was further doubled to 266 nm to excite the
LIF. The resulting laser sheet energies were typically 240 mJ/pulse at 532 nm and
30 mJ/pulse at 266 nm. To capture the signals, two slow-scan, thermoelectrically
cooled CCD cameras, with 500 x 500 pixel resolution, were used. Optical filters
ensured separation of the LIF signal (which peaks in the range 400-500 nm) from
the 532 nm Rayleigh scattering signal. To obtain the scalar concentrations from
the raw imaging signals, standard background and sheet intensity profile corrections
were performed. For additional accuracy, however, the intensity profiles for the two
sheets were captured for individual pulses rather than on an average basis.

In computing the three components 0C/9z; of the scalar gradient vector, the
out-of-plane component (here, 3C/3z) will be subject to the highest uncertainties,
owing to the need to perform the difference calculation across distinct planes, which
were obtained by different techniques and processed independently. To quantify
the errors incurred, Su & Clemens (1998a,b) applied the two-plane technique to a
single spatial plane, for which the scalar fields measured in the two imaging planes
should be equal. Deviations from this were used to estimate the errors in the
three-dimensional measurements. It was found that errors in the 8C/3z term were
substantially smaller than the magnitudes of dC/8z corresponding to significant
events in the dissipation fields.

2.1.8 Spatial resolution

To increase signal levels, the scalar field images were binned 2 x 2; in the data
reduction process it was also necessary to match the fields of view of the two cameras
geometrically, with the resulting pixel resolution being 220 x 220. This measurement
area spanned 34 jet widths, h, per side, giving a grid resolution Az = Ay of roughly
150 ym. The 266 nm laser sheet showed a Gaussian cross-sectional profile, with a full
width at the 5% points of 200 um at its waist, while the 532 nm laser sheet showed
a roughly uniform profile with a full width of 180 um. The laser sheet spacing
Az was 200 pm. These parameters are to be compared with the estimated finest
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(b)

81h

-15h X 18 h

FIGURE 1. Scalar fields measured by (a) PLIF and (b) Rayleigh scattering, with a
laser sheet separation of 200 ym. The mean flow direction is upward in the images.
The Reynolds number, Reg, evolves from 5100 to 6200 in the measurement area.

dissipation length scale Ap (Eq. 1), here computed using A = 11.2 as suggested
by Buch & Dahm (1991). For these measurements the downstream coordinate y
spanned from 65 to 127 h, and the Reynolds number Res ranged from 3200 to 8400.
The resulting Ap ranged from 370 gm to 720 pm. Therefore 0.21 < Axr/ip < 0.41
and 0.28 < Az/Ap < 0.54, where these non-dimensional grid spacings should be
0.5 or less to satisfy the Nyquist resolution criterion.

2.2 Results

A scalar field image pair obtained by this simultaneous Rayleigh/LIF technique is
shown in Fig. 1. The mean flow is upward in the images, so the positive y direction
is streamwise, while the x direction is cross-span and the z (out-of-plane) direction
is spanwise relative to the mean flow. In these fields C is normalized by < C >, the
mean centerline concentration value for the full set of 906 image pairs.

Figure 2a shows the scalar dissipation for the scalar field of Fig. 1. The in-
plane derivative components were determined from the LIF image (Fig. 1a) by two-
point central differencing, and the out-of-plane component was found by simple
differencing between the LIF and Rayleigh images. The dissipation shown in the
figure is non-dimensional, with the scalar values being normalized by < C >, and
the Az; used in the differencing being normalized by Ap (Eq. 1), with A = 11.2.
Figure 2b shows the dissipation layer centers for dissipation field of Fig. 2a. The
layer center field was compiled by first identifying peaks in the dissipation field. A
given point was determined to be a ‘peak’ if it both exceeded a given threshold,
and represented the local maximum of dissipation in both its positive and negative
in-plane scalar gradient directions. A connectivity condition was then imposed on
the peak field to remove noise effects. For Fig. 2a, the threshold value was that
which captures 50% of the total dissipation for the full data set (non-dimensional
y = 0.058), and the connectivity condition required that the dissipation structures
span a minimum length of twice Ap.

The probability distribution of the logarithm of the dissipation is shown in Fig. 3.
Also shown is a Gaussian distribution having the same first two moments. The
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FIGURE 2.  (a) The non-dimensional scalar dissipation for the scalar fields of
Fig. 1. (b) The layer centers.
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FIGURE 3. Distribution of the logarithm of the non-dimensional scalar dissipation.
Current data, ——— ; Gaussian (with same first two moments), ---- .

measured distribution follows the Gaussian quite closely, except for a slight negative
skewness. Similar asymmetry has been observed in both experiments (Feikema, et
al. (1996)) and direct numerical simulations (Eswaran & Pope (1988)) of scalar
mixing, and has also been seen in the kinetic energy dissipation in DNS (Vincent

& Meneguzzi (1991)).
2.2.1 Length scales

It is generally accepted that the scalar dissipation field is organized into layers;
the thickness of these layers will scale with the local outer scale Reynolds number,
Res, in a manner dependent on the strain field on the layers. Where the strain
field is the inner scale strain the normalized layer thickness, Ap /6, scales as R66_3/4
(Batchelor /Kolmogorov scaling), while if the strain field were the outer scale strain

the thickness would scale as Regl/ ? (Taylor scaling). The traditional view (e.g. Ten-
nekes & Lumley (1972)) holds that the bulk of the scalar dissipation occurs at the
Batchelor scale, though Dowling (1991), based on time-resolved single point scalar
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field measurements, has suggested that the regions of highest dissipation observe
Taylor scaling. Nevertheless, Dowling (1991) found that the smallest dissipation
scales observe Batchelor scaling.

Numerous studies have attempted to find the value of the constant A in Eq. 1
which accurately defines the size of the smallest dissipation scales. These efforts
have generally proceeded by analysis of single-point scalar or velocity time series
data. The difficulties of this approach can be seen by noting that Dowling & Dimo-
takis (1990) found A = 25 from spectra of scalar concentration fluctuations, while,
using the same scalar time series data set, Dowling (1991) subsequently obtained
A ~ 5 from scalar dissipation rate estimates. In contrast, Buch & Dahm (1991)
determined A = 11.2 from explicit measurement of the average thicknesses of dis-
sipation structures in two-dimensional scalar field images. This latter approach is
taken here.

Consistent with Buch & Dahm (1991), we define Ap from Eq. 1 as the average
of the full widths of the dissipation layers, where this width is computed as the
distance across a layer between those points where the dissipation is 20% of the
maximum. As a first step in computing the layer thicknesses, the layer center fields
for the images were found, as described in Sec. 2.2 and shown in Fig. 2b. For each of
the points on these layer centers, a search was then performed in the scalar gradient
direction (both positive and negative) until the dissipation value dropped to 20%
of the maximum. The resulting layer half width values were then doubled to give a
measure of the full width. Statistics were not compiled for those layers where the
dissipation failed to drop monotonically, indicating a possible intersection of layers.
Finally, because the dissipation images, and thus the thickness computations, are
strictly two-dimensional, the resulting thicknesses were adjusted by a factor of cos @,
where ¢ is the out-of-plane angle of VC.

Figure 4 shows the distribution of layer thicknesses, expressed in terms of A, as
determined from Eq. 1. The threshold and connectivity conditions used for the layer
center determination were the same as those used to compute the layer center field
of Fig. 2b. To minimize the effect of the cos ¢ correction, only dissipation maxima
where ¢ < 60° were considered. The mean of the distributionis A = 14.8, indicating
the the layers in these data are somewhat thicker than predicted by Buch & Dahm
(1991), and are over seven times larger than the Batchelor scale determined using
a proportionality constant of 1 in the Kolmogorov scale definition (Egs. 2, 3).

In Fig. 5, the dependence of Ap on the local outer scale Reynolds number Res
is shown. The curve was compiled by dividing the Reynolds number range 3200
to 8400 into 26 bins, then computing the thicknesses for each bin as above, with
the same threshold and connectivity conditions. The curve thus represents the
average layer thickness for the given Res. The dashed line in the plot is the curve
14.5- Re;3/ * The actual least-squares fit gives a Reynolds number dependence of
Rea_'“. From this plot it is quite evident that the average layer thicknesses observe

the Re;?’/ 4 Batchelor scaling. (The constant A = 14.5 differs slightly from that
found from the curve of Fig. 4 because the data are not evenly distributed in Res
space.)
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FIGURE 4. Distribution of dissipation layer thicknesses, expressed in terms of A.
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However, Dowling (1991) concluded that while the majority of the dissipation oc-
curred at scales which followed Batchelor scaling, a substantial portion of the dissi-
pation, in particular the highest local dissipation values, occurred at the larger Tay-
lor scales. With the present data this can be assessed by considering the Reynolds
number dependence of the extremes of the thickness distribution. Figure 6 shows
the Res dependence of the average thickness of the thickest and thinnest 25% of
layers, together with the overall average as shown in Fig. 5. There is no evidence
of Taylor scaling of the thickest layers. The least-squares fit to the thickness curve
for the thickest 25% of the layers has dependence Re;'”, while the curve for the
thinnest 256% has dependence Re;'75. The trend of weaker Res dependence for
thicker layers is consistent with Dowling’s hypothesis, but this very slight difference
of Re;'73 versus Re;""5 is likely within experimental tolerances, and certainly gives
/2 scaling.

Figure 7 shows the dependence of A on the threshold value of the dissipation rate.
Again, in contradiction to the idea that high dissipation values take place on length

e -1
no indication of Re 5
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FIGURE 7. Dependence of the coefficient A on the threshold value of the dissipation
rate.

scales observing Taylor scaling, it can be seen that higher values of x are associated
with thinner layers.

2.2.9 Dissipation rate scaling

The scaling of mean scalar dissipation rates with downstream distance in turbu-
lent jets is of interest in certain models of the stabilization properties of turbulent jet
diffusion flames. Peters & Williams (1983) suggest that the mean scalar dissipation
rate should scale linearly with the global strain rate, with the square of the local
mean centerline scalar concentration, and with the inverse square of the local jet
width. For the planar turbulent jet, we thus expect x o (Us/h)(y/h)™%. The few
existing measurements for the downstream dependence of the mean dissipation fail
to observe the expected scalings, however. In round jets, both Lockwood & Moneib
(1980) and Effelsberg & Peters (1988) found that the decay of x in the self-similar
region was significantly weaker than the predicted (y/d)™* dependence.

The present measurements span from 65 to 127 jet widths downstream, and



44 L. K. Su

0.0001
—
2
~
(=}
o
~—
~
>
1e-05 N
60 70 80 90 100 110 120 130
y/h

FIGURE 8. Downstream decay of scalar dissipation rate, normalized by global
strain rate. Current data, ; best fit, y= 14, —~~- |

so can provide useful information on the decay of the dissipation rate. However,
because the present measurements were intended primarily for investigation of the
structure of the scalar dissipation rate field, no direct effort was made to correlate
the measured scalar concentrations to the initial jet value. We account for the scalar
decay here by assuming that the recommended scaling from Chen & Rodi (1980)
applies, namely

<C(y)> /Co = 246(y/h)™'/2,

where < C(y) > and Cy are the local mean centerline concentration and initial
Jet concentration, respectively, and the effect of the jet and ambient fluid density
difference has been included. For each data set of 15 or 30 image pairs, the centerline
average is found, the effective Cp value is computed from the above formula, and
this Co is then used to normalize the scalar field values for the purpose of compiling
the dimensional dissipation rate .

Figure 8 shows the conditional average of x/(Upy/h) with downstream distance,
for off-center positions |z|/6 < 0.05, i.e. near the centerline. The dissipation rate
X is computed here as x = D (8C/0z;)(dC/0z;), where D is the propane-air dif-
fusivity, 0.114 cm?/s, C is the scalar concentration normalized by Cy, and the z;
are dimensional. The global strain rate Up/h has been divided from y to isolate
the dependence of the decay on (y/h). The dotted line is the best linear fit to the
data, which has a slope of -1.4. Consistent with previous results, the data predict a
much slower decay than anticipated by the theory of Peters & Williams (1983). It
should be pointed out that for both planar and round jets, the fine scales increase
in size with downstream distance, and thus resolution requirements are relaxed as
the measurement area moves away from the nozzle. It is therefore possible that the
decay rates are underestimated because high dissipation rates are more accurately
measured further downstream. For the present measurements, however, the relative
resolution differs at most by a factor of two between the y = 65k and y = 12Th
locations. Considering only these two locations, a dependence of x on y~3 would
require that x decay by a factor of 7.5 from y = 65 h to 127 h, while the measured
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y~14 dependence corresponds to a x decay factor of 2.5. From the evidence of
existing measurements which assess the effects of varying resolution (e.g. Dowling
(1991), Antonia & Mi (1993)), this factor of three discrepancy cannot be accounted
for by the resolution difference between near and far downstream positions. Rather
it appears, based on these limited results, that the current understanding of the
scaling of dissipation rates is quite incomplete.

3. Future plans

While this paper has focused on the fine scales of the mixing field, the data are
also well suited to analysis of larger scale properties and, perhaps more significantly,
to analysis of the interactions of the large and small scales. At the upstream limit
of the measurement domain, y = 65k, the jet width (Eq. 4) is § ~ 25k, while at
the downstream limit, y = 127 k, we find that the jet width is § ~ 50 h. Since each
imaging plane spans 34 h, each scalar field image covers a range of scales from the
finest mixing scale to in excess of 0.686. It is therefore possible, for example, to
investigate scale similarity over the full range of flow length scales. As pointed out
by Frederiksen et al. (1996), information on the full three-dimensional dissipation
rate is necessary to assess the true scale similarity of the mixing process. Direct, a
priori assessments of subgrid models for LES can also be performed, by filtering the
scalar and scalar dissipation results and comparing the model predictions based on
these filtered quantities with the actual values on the original, resolved measurement
grid. Similar tests have been demonstrated both on DNS data for Sc¢ = 1 mixing,
and on experimental liquid-phase mixing results (Cook & Riley (1994)).
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Direct simulation of a jet diffusion flame
By B. J. Boersma

1. Motivation and objective

The main energy source in the Western world is the combustion of fossil fuels, and
it will remain to be the major energy source for at least several decades to come.
Everybody is aware of the problems connected to the combustion of these fuels.
First, their supply is finite, and this means that they should be used economically.
Second, during combustion of fossil fuels, air pollution is generated, e.g., in the form
of toxic gases such as NO, or SO; but also in the form of gases harmless for man
such as CQs, which are nevertheless considered harmful because they may influence
our climate by processes such as the greenhouse effect. In view of these problems,
it will be clear that combustion of fossil fuels with an optimal fuel efficiency and
with a minimal production of pollutants must have a high priority.

The process of combustion is highly complex. It involves fluid mechanical pro-
cesses such as turbulent mixing and heat transfer but also other processes such as
radiation and chemistry. The fact that the combustion involves these very different
processes makes it not only a highly multidisciplinary topic for research, but also
a highly challenging one. For this reason the scientific problem of combustion has
been nominated as one of the “Grand Challenges”to be solved when a Tera-flops
computer becomes available, and this is the background of the project that we
propose here.

In this project we aim to perform a numerical simulation of a non-premixed
turbulent diffusion flame. The objective is to shed light on one of the important
processes in combustion that have been mentioned above, namely turbulent mixing,
which is an essential link in the modeling of combustion. In the past researchers and
designers have used so-called Reynolds-averaged turbulence models to predict the
combustion in various appliances. However, these models have their weaknesses,
especially in the complicated environment of a flame, and they have, in general,
failed to produce acceptable results. A factor contributing to this failure has been
the fact that it is very difficult to perform measurements in the hostile environment
of a combustion flame, and such measurements are needed for validating and de-
veloping turbulence models. Therefore, the problem of turbulent mixing within the
combustion process is to be considered as unsolved.

Recently, new methods have become available for combustion research as a result
of increasing computer power (especially due to the appearance of parallel com-
puters). Two very powerful new methods are direct numerical simulation (DNS)
and large eddy simulation (LES). The first technique (DNS) solves the governing
equations for the combustion without any model. In the second method, a model
is used for the small scales of motion. The first method is computationally very
expensive but gives in general very reliable results. The second method (LES) is
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Coflow

FIGURE 1. The geometry of the coflowing jet.

much cheaper, but the modeling of the small scales introduces an error. In this
paper we will use DNS; there is also LES and experimental work going on for the
same problem (see e.g. Steiner, and Su this volume).

1.2 The geometry

In Fig. 1 we show the geometry of the problem. The jet fluid (in general fuel) is
injected in a slower flowing air (oxidizer) stream. In the experiment the Reynolds
number based on the jet fluid is approximately between 5,000 and 50,000. The
coflow velocity is typically 1 to 5% of the jet velocity.

For the DNS we will use a very simple binary reaction:

[Fuell + [Ozidizer] — 2[Prod]

The factor 2 is included to conserve mole fractions. The reaction rate of this reaction
is given by .
w = DapYspY, exp[—0]. (1)

In which Da is the Dahmkohler number, p is the density, Y; the fuel mass fraction,
Y, the oxidizer mass fraction, and

: 1-6
= ea-o (2)

In which o is the heat release parameter and 8 the Zeldovich number. The non
dimensional temperature 6 is defined as § = (T — T,)/(T, — T,) with T, as adiabatic
flame temperature and T, as room temperature.

2. Low Mach number approximation

There are basically two ways to compute chemically reacting flows with significant
heat-release. The first option is to use a fully compressible flow solver (including
acoustic waves). The second one is to use an incompressible solver with variable
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density. The second method is very attractive for flows with low Mach numbers
because numerical time steps are not related to the speed of sound. Furthermore,
the formulation of the boundary conditions is much simpler than in the fully com-
pressible case.

The low Mach number approximation of the equations of motion can be found
in the literature (see e.g. Williams 1985) For completeness we will give the non-
dimensional governing equations here. Conservation of mass reads

% 49 (pu) =0, 3)

where u is the fluids velocity vector. Conservation of momentum

dpu _
¥y +V-(puu)=-VP +

1 Z
=Y ;(Vu +(Vu)h) (4)

In which P is the pressure, Re the Reynolds number, and p the dynamic viscosity.
The energy or temperature equation reads:

6—'ocr-+V-puT !

M .
= v. Loy (5)

= RePr Ko

with Pr the Prandtl number. Furthermore, we have two equations for the chemical
species, i.e. one for the fuel and oxidizer.

dpY; 1 U .
ey +V puY'_ReScV #OVY. w (6)

with Sc the Schmidt number. The equation of state gives a relation between density
and temperature:
P=pT (N

For the temperature dependent viscosity p we will use the following relation

£ (2)" ®)
Ho T
The main assumption in the low Mach number approximation is that the pressure
P can be written as:

P= Po(t) + ‘7M02P1 (9)

In which Py(t) is the total pressure, which is only a function of time. For an open
domain like our jet, the pressure Py(t) is a constant with an arbitrary value, say
1. This means that in the Navier-Stokes equations (4) Py, which will be further on
denoted by p, plays only a role and that pT =1 at the lowest order.



50 B. J. Boersma

3. Numerical method and parallel implementation

In this section we will give an outline of the numerical method which will be used
to solve the governing equations. The spatial terms in the continuity and momentum
equations are discretized with help of a second-order finite volume method on a
staggered three-dimensional spherical grid (see e.g. Boersma et al. 1998). The
convective term in the transport equations are treated with a TVD scheme (see
e.g. Vreugdenhil and Koren 1993) to keep the scalar concentrations between the
specified minimum and maximum, say 0 and 1. For this, we had to recast the
transport equations in the following form:

oT 1 1 U 2.
E+VUT—TVU—;PTR6VL—D'VT+;W (10)

The diffusive part of the transport equations is treated in a similar way as in the
momentum equations.

The time advancement is accomplished with a predictor-corrector method similar
to the one used by Najm, Wyckoff and Knio (1998). First the transport equations
are integrated from time level n with an explicit Adams-Bashforth step to an inter-
mediate level, i.e.

3 1
T* — T" = M[3(~ A+ Do) = 5(—As+ D)) (11)

where 4, and D, stand for the advective and diffusive terms in the transport equa-
tions (equations for Y; are similar). The equation of state, P = pT, is then used
to find the density at the intermediate level. Also the momentum equations are
integrated to the intermediate level,

*,, % n,n

pru* — p"u

3 n 1 n—
At = [5(—Am + Dm) - 5(_Am + Dm) 1] (12)

In which A,, and D,, stand for the advective and diffusive terms in the momen-
tum equations. The intermediate hydrodynamic pressure is determined from the
pressure Poisson equation

.1 . s Op*
Vipt = V- (ptut) + ] (13)

The derivative 9p* /3t is calculated with help of a backward difference formula using
p*,p™ and p™~*. Once the Poisson equation is solved, p*u* can be corrected in the
following way

p'u* :=p*u* — AtVp® (14)

The next step is to use the Adams-Moulton corrector for the transport equations:

1

n+l n _
T T >

[(—At + D¢)" + (—A: + Dy)"]. (15)



DNS of diffusion flame 51
1.5 . T

T
°°o°'°’°'°"°!
°

-t
T
(-3
®
°
L ]
¢
r/
o5y
1

05| . ]
o° /
= 0 o°° { 4
- e |
’o 5 p
o, <
‘0-5 u ® -3 -
®. J e
o e - e
0° """ ®
-1t %o, % 4
ey )
.°°°°Oooooo~t“
-1.5 L )

-2 -15 -1 05 O 0.5
RE

FIGURE 2. The stability regions of the Adams-Bashforth (AB2) and the predictor
corrector (P-C) method. AB2: ---- ; P-C: 0.

The equation of state again gives the density, but now at time level n+1 Again the
momentum equations are integrated:

pu’ — p"u®

1 n *
! = '2"[(—Am + D))" +(—=Am + D)’ (16)

The Poisson equation is used to obtain the pressure at n + 1, and the velocity
correction gives the final velocity (or flux) at n + 1.

The scheme above is quite similar to the one used by Rutland (1989) and the
one used by Najm et al. (1998). In Rutland’s work the predictor corrector method
is replaced by a fully implicit method using Crank-Nicolson. The advantage of
this method is that there is no restriction on the time step. However, for a full
three-dimensional calculation, the solution of the matrix vector equation is very
expensive. Najm et al. (1998) use the predictor-corrector strategy only for the
transport equations (5), (6) and not for the full system of equations (4), (5) and
(6). In Fig. 2 we show the stability regions of the method proposed by Najm et
al. (1998) and of our method. It is clear that the full predictor corrector method
has a considerably bigger time step without much extra work. Furthermore, the
predictor-corrector scheme does not have the weak instability for advection which
the second-order Adams-Bashforth method has.

3.1 Boundary conditions
In this section we will describe the boundary conditions for the coflowing jet
calculations. At the inflow all components of the velocity are prescribed on the

staggered grid:
u, = Ucosé (17)

ug = —Usinf (18)
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ug =0 (19)
T=1,Yr=1,Y,=0, Inthe orifice
T=1 Y;=0,Y,=1, In the coflow

where U is the velocity (jet or coflow) in a Cartesian system. This boundary con-
dition will be used for both the velocity and predicted velocity (u*).

At the lateral boundary of the jet, several boundary conditions can be used, for
instance, the frequently used free-slip conditions (Gresho 1991) which read:

_ Our _ Oug
=26~ - (20)

Ug

With this boundary condition no entrainment of fluid into the jet is possible because
ug 1s set equal to zero. Another possible boundary condition is the so-called traction
free boundary condition, i.e. the traction of the stress tensor with the unit normal
on the boundary, Gresho (1991)

(—pbij + 7ij) -ng =0, (21)

For simplicity we will assume that the pressure p at the lateral boundary is constant.
Without loss of generality we can also assume that the pressure at this boundary
is zero. In the computational domain the pressure is calculated by the model, and
the pressure difference between the pressure at the border and the pressure in the
computational domain will determine the entrainment of fluid in or out of the jet.

At the outflow boundary we apply a convective boundary condition (see e.g.
Akselvoll and Moin 1996).

Opu = - Opu (22)
ot or
where U = U(#) is the mean velocity at the outflow boundary. This boundary
condition is applied to the predicted velocity u*. The convective boundary condi-
tions are discretized using a first-order upwind method in space and a first order
discretization in time.

From numerical experiments, we found that the flow is rather sensitive to the
convective outflow velocity U. It turns out that errors in the outflow boundary con-
dition generate rather high pressure gradients near this boundary, and this influences
the entrainment over the lateral boundary, which changes the total behavior of the
Jet. These large pressure gradients can be avoided by enforcing that the integral,

///(6;; +V'pu*)dV°l=///a;t*dVolJr//pu*dS, (23)

is exactly zero. We enforce this by chancing pu, at the outflow boundary.
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3.2 Parallel implementation

The numerical method outlined above has been implemented on parallel machines
using the message passing interface (MPI). Let Ny, Ny and Ny be the number of
grid points in the coordinate directions and Np the number of processors. It is clear
that from a physical point of view N, will be larger than Ny and Ny. Therefore, we
have decided to distribute the radial direction over the CPU’s. Thus on every CPU
there are N, /N, x Ny x N4 points. To minimize the communication we have added
two ghost points in the radial direction, so actually there are (N,./Np+2)x Ng x Ny
point on every CPU. With these ghost points all the explicit updates can be carried
out without communication.

The Poisson equation is solved with a combination of Fast Fourier and Cyclic-
reduction methods (see e.g. Boersma et al. 1998). The Fast Fourier transform of
the right-hand side of the Poisson equation in the ¢ direction is local (no commu-
nication). The results of Fourier Transform are then redistributed to a distribution
N, x Ng x Ng/N,. The two-dimensional (Helmholtz) problems in r and 6 can
be solved efficiently with the BLKTRI routine from the public domain package
FISHPAK. The solutions of the Helmholtz problems are again redistributed to
the N,/N, x Ng x Ny distribution, and another local Fast Fourier Transformation
gives the pressure in physical space.

The parallel strategy outlined above scales very well as can be seen from Table 1.

Table 1. Scalability of the parallel code

N, Grid CPU/At
4 1283 62.1 sec
8 1283 31.2sec
16 128% 16.1 sec
32 128% 8.6 sec
64 128% 5.1 sec

4. Results

To validate the parallel code we performed a calculation of a cold coflowing jet
with a Reynolds number based on the diameter of 4,000 and a velocity excess of
10. The important parameters for this simulation are listed in Table 2.

Table 2. Some important parameters for the cold jet.

N, x Ng x Ng 768 x 128 x 96

L 45D
N, 48
Rey 4,000

A 10
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FIGURE 3. Contour plots of the fuel concentration (left) and the axial velocity
(right) in the cold jet.
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FIGURE 4. The mean velocity profiles obtained from the DNS (—— ) and from
the experiment of Nickels and Perry, 1996 (---- ).

In Fig. 3 we show a contour plot of the distribution of the scalar field in the cold
jet. Close to the jet orifice an axisymmetric Kelvin-Helmholtz instability is present.
Further downstream these structures break up in fully three-dimensional ones. In
Fig. 4. we show that the mean self-similar velocity profile obtained from the DNS
and also the curve fit through the experimental data of Nickels and Perry (1996).
It should be noted that the profiles are scaled with the width A and not with the
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FIGURE 5. The Reynolds shear stress profiles obtained from the DNS (—— )
and from the experiment of Nickels and Perry, 1996 (---- ).

FIGURE 6. The distribution of the fuel (left) and the temperature (right) in the
hot jet.

distance to the virtual origin. The agreement between experiment and simulation is
rather good. This can also be seen from Fig. 5 in which we compare the computed
Reynolds stress (DNS) with the experimental data of Nickels and Perry (1996).
Finally, we show some qualitative pictures of a heated jet. The jet geometry
shown in Fig. 1 together with the assumed chemistry might lead to a lifted flame,
which requires a very long domain. At this stage we do not want to do a calculation
for such a flame because it requires a huge amount of CPU time. Therefore, we have
chosen a jet with a pilot, which keeps the flame attached to the orifice. The fluid
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leaving the pilot has a temperature of 0.997, and corresponding fuel and oxidizer
concentrations. The effect of the pilot on the flow itself will be small because it
has a very small momentum flux compared to the jet (approximately 5%). Figure 6
shows a contour plot of the concentration of fuel. It is clear that the combined effect
of temperature/density variation plus increased viscosity due to higher temperature
strongly suppresses the Kelvin-Helmholtz instability, leading to an almost laminar
flow close to the jet orifice. (The high temperature in the initial shear layer increases
the viscosity by more than a factor of three.) Further downstream there is still a
clear transition to a fully turbulent state. Figure 6 (right) shows the density in the
Jet. Here we see more or less the same behavior as in Fig. 6 (left).

5. Conclusions and future work

We have shown that the developed numerical method is capable of simulating
cold coflowing jets quite accurately. This gives us confidence for the heated case in
which there is hardly any reliable experimental data available. From the preliminary
results for the heated jet, it is clear that the combined effect of density variation
and increased viscosity has a strong damping influence on the Kelvin-Helmholtz
instability, leading to a delayed transition and a flow with considerably less small
scales. Therefore, in future calculations it is probably possible to increase the
Reynolds number and still resolve all scales of motion for the hot jet. In the near
future the results of the DNS will be compared with the LES data obtained for the
same geometry by Steiner (this volume) and with the experimental data obtained
by Su (this volume).
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On the use of interpolating wavelets in the
direct numerical simulation of combustion

By R. Prosser AND W. K. Bushe

1. Motivation

Direct Numerical Simulation (DNS) of turbulent flows is an activity severely
limited by presently available computer power. It has long been known (e.g. Corrsin
1961) that in order to resolve accurately the governing Navier-Stokes equations,
the number of computational cells required scales as a super-linear power of the
Reynolds number. Reacting systems add additional complexity to this already bleak
picture. In many flows of industrial interest, the length and time scales associated
with the reaction mechanism are much smaller than those of the fluid turbulence,
and the resolution requirements for chemically active flow simulations are thereby
considerably increased. When this is added to the computational expense incurred
by the stiffness of highly non-linear reaction rate source terms, it appears that
reacting flow simulations of significant complexity will remain firmly out of reach
for the foreseeable future. Nonetheless, the same spatial and temporal stiffness that
gives rise to such demanding computations may paradoxically provide a foothold
for efficient numerical methods. Many industrial processes involving combustion
occupy the laminar flamelet regime (Libby & Bray 1980, Bray, Libby & Moss 1985)
where the turbulent flame can be regarded as a highly localized sheet of chemical
activity, either side of which the fluid composition remains relatively constant.

The ability of wavelet based methods to analyze functions in terms of their local
rates of change appears eminently suited to the numerical investigation of non-
linear partial differential equations, the solutions to which often contain a large
number of disparate length scales. In particular, the efficient discretization of fluid
flow problems have been the focus of a number of recent investigations, both with
chemical reaction (Bockhorn, Frolich & Schneider 1995, Frolich & Schneider 1996,
Frolich & Schneider 1997,) and without (Bacry, Mallat & Papanicolaou 1992, Frélich
& Schneider 1995, Bihari 1996). Many of the discretizations proposed to date have
been limited to periodic domains although recent efforts have led to advances in
non-periodic discretizations (Vasilyev, Paolucci & Sen 1995, Vasilyev & Paolucci
1996, Vasilyev & Paolucci 1997).

In this paper, we discuss the generalization to two spatial dimensions of an ex-
isting wavelet based scheme intended for combustion problems (Prosser & Cant
1998a). The approach adopts a collocation strategy but, unlike traditional colloca-
tion methods, the solution to the set of governing equations is obtained on a grid of
collocation points located in a hierarchy of wavelet subspaces. The solution is only
returned to the physical space in order to evaluate non-linear inertial and chemical
reaction rate terms. The key advantage of this approach, and the motivation for its
derivation, is that while the solution is expressed in terms of the wavelet spaces, it
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is possible to develop an elegant algorithm to exploit the sparsity of the representa-
tion in order to reduce both the amount of storage required and the computational
effort expended in resolving the chemistry fields.

2. Accomplishments

As a preliminary step towards a fully adaptive wavelet based scheme, a 2-D code
has been developed. The governing equations for density, momentum, stagnation
internal energy, and species mass fractions are solved using a collocation strategy.
Unlike traditional collocation methods, the governing equations are satisfied at col-
location points within the hierarchy of wavelet spaces. Due to the ability of the
wavelets to identify regions of changing continuity properties, an adaption strategy
based on the wavelet coeflicients’ absolute magnitude will automatically track the
flame front during the course of a simulation.

The wavelet discretization is based on a tensor decomposition of the two dimen-
sional computational domain and takes the form

Vi =Vie vy
WP = (Vie WY) & (W5 e V)) e (W5 W)
- W_(]a) ® wf]ﬁ) GBW.(]A’)

ng) and Wgz) are used to denote the two-dimensional scaling function and wavelet
spaces, respectively. We observe that the definition of W.(,z) involves a set of ‘cross
correlation’ spaces, denoted here by W(i), which arise via the definition of the 2-
D vector space Vf,z) and by the causal property of the multiresolution analysis:
V_(Iz) = ngl)l &) W.(,'i)l The dimensionality of the subspaces are

dim(V} ® V¥) = (27 + 1) x 27 = dim(V} @ W¥)
dim(W3} @ V¥) = (27) x 27 = dim(W3¥ @ W),

The disparity between (say) V¥ and V7 arises through the span-wise periodicity in
the computational domain and is discussed further in Prosser & Cant (1998a).

For this investigation, we have chosen an initial finest resolution for the compu-
tational domain of 257 x 64 grid points. In the language of the previous equations,
this implies ng) = V& ® Vg. The reorganization of the domain under the action
of the bi-dimensional wavelet transform is depicted in the lower half of Fig. 1. Note
that the spanwise decomposition of the domain only occupies two subspaces while
the streamwise direction employs four subspaces. This reflects the fact that the
principal structure in the domain, the planar flame, is oriented with its normal
initially pointing in the streamwise direction.

Figures 2 and 3 show the u-velocity surface through the flame structure and its
corresponding decomposition onto a set of wavelet spaces. We see that, due to
the considerable irregularity in the physical space representation of the velocity,
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FIGURE 1. 2D tensor decomposition of initial computational domain into wavelet
subspaces.

the transform domain is not sparse. This is demonstrated in Table 1 by the large
number of wavelet coefficients greater than the prescribed thresholds.

Figure 4 shows a contour plot of the progress variable profile. We note that,
due to the comparatively short simulation time, the degree of flame wrinkling is
not great. The wrinkling that has taken place, however, is confined mainly to the
preheat zone, which places the flame in the thin reaction zones regime discussed by
Peters (1998). The considerable length scale separation between the flame structure
and that of the computational domain leads to a non-trivial sparsity in the wavelet
representation of the progress variable profile. Table 2 presents this sparsity in
terms of the number of non-trivial wavelet coefficients measured with reference to
a given datum. The table shows that, for a threshold of 107°, 85.4% of the original
wavelets used to discretize the profile are redundant. The reduction in accuracy
incurred by this surgery is expressed in terms of the normalized l; reconstruction
error shown in the rightmost column of Table 2. From the small values of these
errors, it is apparent that the approximation introduced by thresholding is very

small.
3. Future plans

3.1 Discretization of operators

In the present formulation, the discretization of the differential operators 5%— is
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Table 1. Number of u-velocity wavelet coefficients with absolute magnitude greater
than a prescribed threshold ¢ > 0. Third column shows the possible compression
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€ #|dik] > € possible compression
10~% 16401 1.0029
10~7 15979 1.0294
10°° 12734 1.2917
107> 10010 1.6432
10—4 5477 3.0031

obtainable through thresholding.

z (mm)

FIGURE 4. Contour plot of progress variable. Products are at the top of the plot,
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and reactants are at the bottom.

via the standard decomposition,

While this approach is the simplest to implement, it suffers from two drawbacks:

=

J-1

Py, ,+ Y Pw,

i=J—p

o J-1
gap | Pvas 2 P
4 i=J—p



62 R. Prosser & W. K. Bushe
€ #|dix| > € possible compression Ic—cc;h
10-8 8625 1.9070 2.3690 x 10~°
10~ 5877 2.7987 2.7555 x 1078
10~° 4032 4.0794 2.7105 x 107
10~ 2407 6.8334 2.4788 x 1075
104 1349 12.1297 2.8931 x 10~°

Table 2. Number of progress variable wavelet coefficients with absolute magni-
tude greater than a prescribed threshold € > 0 and corresponding reconstruction
accuracy. Third column shows the possible compression obtainable through thresh-
olding.

o The number of non-zero coefficients in the 8% operators scale asymptotically as
O(N log, N) (Beylkin, Coifman & Rokhlin 1991).

o The structure of the operator is not readily amenable to an unbounded adaption
strategy, in which an arbitrary number of discretizing nodes are introduced. Using
the standard decomposition, 8% needs to be recalculated every time a new set of

wavelet subspaces Wgz) are added or removed.

An alternate, more sophisticated approach is to represent the differential oper-
ators in terms of the non-standard decomposition (Beylkin, Coifman & Rokhlin
1991). In this latter technique, an arbitrary operator T can be represented as an
integral kernel;

Tf(z) = / ke, ) f(y)dy.

The integral kernel is then expanded over a set of square wavelet subspaces (i.e. of
the form W¥ ® WY). The advantages of this approach are twofold:
¢ The number of entries in the non-standard decomposition is O(N).

¢ The decomposition is self-similar across resolutions and can be implemented as
a finite difference like scheme. Such an approach is much more readily amenable
to truly adaptive calculations.

3.2 Evaluation of non-linear terms

The principal expense incurred using this algorithm is during the evaluation of
non-linear terms. Presently, non-linearities are evaluated by first inverting the terms
to physical space where, after evaluation, they are re-projected onto the hierarchy
of wavelet spaces. While reasonably quick to execute, such a technique does not
provide insight into the interactions between scales in the wavelet domain nor into
the generation of aliasing errors.

Some preliminary work has been carried out in the evaluation of arbitrary non-
linearities for one dimensional wavelet expansions (Prosser & Cant 1998b). As may
be expected, the interactions produced by (say) a quadratic non-linearity introduces
mixing between the subspaces occupied by the multiplicands. More importantly,
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a new term is created, which cannot be represented on a fixed resolution grid and
which represents the generation of un-resolvable wavelet coefficients. This term
arises as a result of the increasing departure of the non-linear term from the set of
polynomials spanned by the scaling function bases alone.

From a practical point of view, the new method of evaluation is approximately
twice as fast in execution as the earlier method, and there are grounds for cau-
tious optimism that this increased execution speed may scale geometrically with
the spatial dimension of the problem.
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On the use of a dynamically adaptive
wavelet collocation algorithm in DNS
of non-premixed turbulent combustion

By Oleg V. Vasilyev! AND W. Kendal Bushe

1. Motivation and objectives

The ability to model non-premixed combustion is very important; many practical
combustion devices operate with non-premixed flames in the presence of turbulent
flows (Vervisch & Poinsot, 1998). Non-premixed turbulent flames are characterized
by a large spectrum of temporal and length scales. Additional complexity is added
by the large number of unknowns and by the stiffness of highly nonlinear chemical
source terms associated with realistic kinetic mechanisms. Conventional numerical
algorithms are not able to resolve all the characteristic scales affordably. As a
consequence, most of the current efforts are focused on developing model equations
using either RANS or LES methodologies.

The ability of wavelet based numerical algorithms to locally resolve the structures
appearing in the solution without drastic increase in the number of the unknowns
enables us to pursue a different avenue of research. Since most flames occupy a
relatively small volume within the domain of interest, dynamically adaptive wavelet
collocation algorithms are ideally suited for direct numerical simulations of non-
premixed turbulent flames with realistic chemistry.

Wavelet analysis is a new numerical concept which allows one to represent a
function in terms of basis functions, called wavelets, which are localized in both
location and scale (Meyer, 1990; Daubechies, 1992). Good wavelet localization
properties in physical and wavenumber (spectral) spaces can be contrasted with the
spectral approach, which employs infinitely differentiable functions but with global
support and small discrete changes in the resolution. On the other hand, finite-
difference, finite-volume and finite-element methods have small compact support
but poor continuity properties. Wavelets appear to combine the advantages of both
spectral and finite-difference bases. One can expect that numerical methods based
on wavelets will attain both good spatial and spectral resolution.

Recently Vasilyev and Paolucci (1996, 1997) have developed a dynamically adap-
tive multilevel wavelet collocation algorithm for partial differential equations in
multiple dimensions. The basic idea behind the multilevel wavelet approximation
is that a function can be approximated as a linear combination of wavelets hav-
ing different scales and locations. Adaptation is achieved by retaining only those
wavelets whose coefficients are greater than a given threshold. This property of the

1 Present address: Department of Mechanical and Aerospace Engineering, University of Missouri,
Columbia, MO 65211
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multilevel wavelet approximation allows local grid refinement up to an arbitrary
small scale without a drastic increase in the number of collocation points; thus,
high resolution computations can be carried out only in those regions where sharp
transitions occur.

The dynamically adaptive wavelet collocation algorithm is ideally suited to han-
dling problems with localized structures, which might occur intermittently anywhere
in the computational domain or change their locations and scales in space and time.
Conventional adaptive algorithms are costly because grids can change drastically
within a short time interval, thus the use of conventional algorithms on a uniform
grid is impractical. Thus, the main advantage of the dynamically adaptive wavelet
collocation algorithm is that it will use far fewer grid points than the other algo-
rithms when applied to problems with a great diversity of spatial-temporal scales.
In addition, the computational grid can be refined locally to an arbitrary small size
grid. We emphasize here that the adaptation of the computational grid does not
require additional effort and consists merely in turning on and off wavelets at differ-
ent locations and scales. Other robust properties of this algorithm are that it can
handle general boundary conditions and the relative error can be actively controlled
by prescribing a threshold parameter. All of these features make this algorithm an
attractive candidate for direct numerical simulation of combustion.

The objective of this report is to present initial results which demonstrate the
potential benefits of the use of the dynamically adaptive wavelet collocation algo-
rithm in turbulent combustion simulations. The use of wavelets in modeling com-
plex physical phenomena is something of a novelty, and as a first step to achieve the
ambitious goal of efficient numerical simulations of non-premixed turbulent flames,
we consider a simple model of laminar flame-vortex interaction.

2. Accomplishments

2.1 Wavelet approzimation

The most important property of wavelet analysis is that a function is decomposed
in terms of basis functions having different discrete scales and locations. These basis
functions are constructed by the discrete (typically dyadic) dilation and translation
of a single function, which has good localization properties in physical as well as
wave-number spaces. In other words, wavelet analysis can be viewed as a multilevel
or multiresolution representation of a function where each level of resolution con-
sists of basis functions having the same scale but located at different positions. In
this report we will only describe the main points necessary to introduce the dynam-
ically adaptive wavelet collocation method. A more detailed description is given by
Vasilyev (1996) and Vasilyev and Paolucci (1997).

In one-dimensional space the wavelet basis consists of a doubly indexed function

set {1}(z):j,k € Z,z € R} given by

. _ _
¢i(x):ajl/2¢(ma‘k>’ (1)
J
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where () is a one-dimensional wavelet and ’(ﬁi(ft) is a wavelet of scale a; =
ap2~7 located at position b, = ajk. Superscripts denote the level of resolution
and subscripts denote the location in physical space (with the exception of a;).
Wavelet bases can be introduced the same way in multiple dimensions, provided
that one uses an n-dimensional wavelet function 1(x) (x € R"). We will use bold
symbols to denote n-dimensional vectors, e.g. x = (21y.--,Zn), k = (k1,...,kn),
by = (bx,, ..., bk, ). Following this notation, an n-dimensional wavelet basis is given

by
n -1/2 : :
={[Ta=s}) ¢ noty 2ot (2)
] i) Az, 3ty az. ; )
i=1 17 nl

where a,,j and bi‘ (i=1,...,n, j€Z, ke Z")arewavelet scales and locations

at the ;! level of resolution.

Let us consider a function u(x) defined on a closed n-dimensional domain 2. Let
j =0 and j = J be the coarsest and finest levels of resolution respectively. Due
to the compact or effectively compact wavelet support, at each level of resolution
j =0,...,J there exists a finite n-dimensional integer set ZQ such that function
u(x) can be approximated as

J
I(x) =) € 0 ¥i(x), (3)

3=0

where C’ and ¥7(x) are n-dimensional arrays of wavelet coefficients and basis func-
tions correspondingly. Operator ® denotes the summation over the n-dimensional
array of indices Z}, and is given implicitly by

CloW(x)= Y dpi(x). (4)

keZ,

Equation (4) applies to wavelets of any dimensionality.

The next issue is how to compute wavelet coefficients for a given function u(x).
Following the standard collocation approach, wavelet coefficients are found based on
the values of a function at certain locations called collocation points. In a wavelet-
collocation algorithm a set of collocation points {xk ke ZQ} is defined such that
the collocation points of the coarser level of resolution are a subset of the collocation
points of the finer level of resolution. In other words, for any ; (0<j<J—1)the
following relation between the collocation points at different levels of resolution is

satisfied: ‘
{xf(} C {X|J<+1}- (5)

Every wavelet is characterized by its location b{‘. Wavelets whose centers are
located within the domain will be called “internal” wavelets; those whose centers
are located outside the domain will be called “external” wavelets. The choice of
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collocation points for wavelets is not unique. For internal wavelets, the location of
the center seems to be the most natural choice for the collocation point, provided
that the wavelets are non-zero at b]. We choose the collocation points of exter-
nal wavelets to correspond to the locations of internal wavelets at finer levels of
resolution. This ensures that relation (5) preserved.

Wavelet coefficients are found in a recursive manner. We start from the coars-
est level of resolution and progressively move to the finest level. On each level of
resolution the coefficients of the lower levels are fixed so that we only obtain the
coefficients corresponding to that level. The procedure of finding wavelet coeffi-
cients can be described as a consecutive recursive application of two steps. For
each level of resolution j (0 < j < J), we first find the residual between the
approximation u”(x) ‘and the contributions of lower levels of resolution given by
AV(x) = ul(x) - TI21 C o T(x) (le(xJ) = u’(x)). We then obtain wavelet
coefficients by evaluating A7(x) at xj, collocation points and requiring the values
of the residual A’ (x,’() to be the same as the wavelet contribution at that level of
resolution. This requirement yields the equation:

Al(x}) = C) @ W/(x)). (6)

Solving this equation gives us the values of wavelet coefficients at the j level of
resolution. We repeat this two-step recursive procedure until we reach the finest
level of resolution. '

The absolute value of the wavelet coefficient ¢] depends upon the local regularity
of u(x) in the neighborhood of the wavelet location. The wavelet approximation
(3) can be written as a sum of two terms composed respectively of wavelets whose
amplitudes are above (u(x)) and below (uZ(x)) a threshold e:

ul(x) =ué(x)+ui(x), (7)

where uZ(x) is given by

J J
ux) =3 Co, ¥ =3 3 dux), (®)
=0 =0 x€Zg
IchIZC

and uZ(x) is calculated analogously with the exception that the sum includes only

wavelets whose coefficients are below the threshold, i.e. Icf(| < e. It is easy to show
that

”uJ(x) - ué(x)”m(m) <Ce H“J(x)”m(ﬂ") , (9)

where C is a constant of order unity. Thus, a good approximation is maintained
even when wavelets whose coefficients are below a certain threshold are omitted,
and only those wavelets whose coefficients are above the threshold are kept.
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2.2 Dynamically adaptive wavelet collocation algorithm

In order for the algorithm to resolve all the structures appearing in the solution
and yet be efficient in terms of minimizing the number of unknowns, the basis of ac-
tive wavelets and, consequently, the computational grid should adapt dynamically
in time to reflect local changes in the solution. The adaptation of the computa-
tional grid is based on the analysis of wavelet coefficients. The contribution of a
wavelet into the approximation is significant if and only if the nearby structures
of the solution have comparable size with the wavelet scale. Thus, we may drop
a large number of fine scale wavelets with small coefficients in regions where the
solution is smooth. Every wavelet is uniquely associated with a collocation point
and, consequently, the collocation point should be omitted from the computational
grid if the associated wavelet is omitted from the approximation. This property of
the multilevel wavelet approximation allows local grid refinement up to an arbitrary
small scale without a drastic increase in the number of collocation points.

To ensure accuracy, the basis should also consist of wavelets whose coefficients
can possibly become significant during the period of time when the basis and, con-
sequently, the computational grid remain unchanged. Thus, at any instant in time,
the basis should not only include wavelets whose coefficients are above a prescribed
threshold parameter €, but also the surrounding wavelets. In other words, at any
instant in time, the basis should include wavelets belonging to an adjacent zone of
wavelets for which the magnitude of their coefficients is within an e prior: prescribed
threshold. We say that the wavelet ! (x) belongs to the adjacent zone of wavelet
i (x) if the following relations are satisfied:

lj —1 < L, Ibi‘. — bl | < Miag,, (10)

where L determines the extent to which coarser and finer scales are included into
the adjacent zone and M; defines the width of the adjacent zone in physical space.

Let us denote by G4 the irregular grid of collocation points that are retained to
approximate the solution at time t. Following the classical collocation approach
and evaluating partial differential equations describing flow evolution at collocation
points, we obtain a system of nonlinear ordinary differential equations. Functional
derivatives appearing in the equations are found by differentiating the wavelet ap-
proximation and evaluating the result at collocation points.

The present numerical algorithm consists of three steps:

1. Knowing the values of the solution uj(t), we compute the values of wavelet coef-
ficients at all levels of resolution. For a given threshold € we adjust g’;“ based
on the magnitude of the wavelet coefficients. -

2. If there is no change between computational grids g‘z and g‘;f‘“ at time t and
t + At, we go directly to step 3. Otherwise, we compute the values of the solution
at the collocation points g‘;‘“, which are not included in G5,.

3. We integrate the resulting system of ordinary differential equations to obtain new

values ujl(t + At) at positions on the irregular grid G5HAt and go back to step 1.
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The basic hypothesis motivating the algorithm is that, during a time interval
At, the domain of wavelets with significant coefficients does not move in phase
space beyond the adjacent zone. With such an algorithm the grid of collocation
points is dynamically adapted in time and follows the local structures that appear
in the solution. Note that by omitting wavelets with coefficients below a threshold
parameter € we automatically control the error of approximation. Thus the wavelet
collocation method has another important feature: active control of the accuracy of
the solution. The smaller € is chosen to be, the smaller the error of the solution is.
In typical applications the value of € varies between 1072 and 10%, assuming that
the unknown dependent variables have been properly normalized. As the value of
€ increases, fewer grid points are used in the solution.

2.8 Model problem formulation

The model problem involves a diffusion flame interacting with a vortex pair in a
rectangular two-dimensional domain containing fuel and oxidizer on either side of
the flame. The chemical mechanism we consider is represented by single reaction
between fuel and oxidizer:

F+0=P,

where unity stoichiometric coefficients were assumed for simplicity. The reaction
rate behaves according to the Arrhenius form:

w = KpYrpYo exp ( T;,c) , (11)

where p is the density, T, is the activation temperature, K is the pre-exponential
factor, and Yr and Yo are the fuel and oxidizer mass fraction.

The characteristic scales are the length scale L*, the speed of sound cj, and the
density pg. The subscript O refers to the reference value at some location, and
superscript “*” denotes dimensional quantities. The reference state is that of the
unburned gas; the reference temperature T, = (y — 1)T; is obtained from the
equation of state, where 7 is the ratio of specific heats ¥ = ¢,/c,. With this nor-
malization, the non-dimensional governing equations are given by (Ruetsch, 1998):

?}f + —(pux) (12¢)

ag:“ + 56—_ (pusu;) = gP + g;']’ i=1,2 (126)
?a—:+—[(e+P)u,] = —1— ( u; ”)+RelPr82, ( g:) + e, (12¢)
agp + aTj(pruj) = +§197p_6%,~ (u%—ﬁ) ~ v, (12d)

P=21, (12f)



Adaptive wavelet algorithm for DNS of combustion 71

where
o, (Oui  Ouj _ 20uk,
ni=H (63:,- t 0z; 30zx 6”) ’ (13a)
u=[(r- 11", (136)
— l g —— (13
e—2pu,u. ST c)
. —_ 1-6
wWe = QP2YFY0 exp (_l_-ﬂ——(_a_(i_——)—e)> , (13d)
o= "% ((y-1T-1), (13¢)
R (13)
B = a?j_‘:f_, (13i)
f
1 1- .
£= 119 a 2y -1), (135),

a = 0.76, = is the pre-exponential factor, Ty is the adiabatic flame temperature, and
® is the equivalence ratio. Note that Eq. (13d) is the non-dimensional version of
the Eq. (11), rewritten in a form suggested by Williams (1986). The independent
non-dimensional parameters appearing in the equations are

* *

*coL*
pOO —-*“F’ SCO:—‘%,
g A ")

_H<p -
Re = /_LO ) Pr = —X*_’ SCF =

where u* is dynamic viscosity, A* is thermal conductivity, and D} and D are fuel
and oxidizer diffusivities respectively. It is assumed that the Prandtl number Pr
and the Schmidt numbers Scr and Sco are constant throughout the flow.

The initial conditions are given by

p(.’L‘l,.'Ez,O) =1, (146!)
2 o )2 o )2
ui(z1,72,0) = Z 1\7 (z2 — z2,i) exp o m o) ;(mz =2.) , (14b)
2 R e )2
uz(z1,2,0) Z '1}5 (z1 — 1,i)exp (_(:1:1 £10) :2(:52 22.) ) , (14¢)
T(z1,2,0) = —1- (14d)
1542, = 5= 1
1 1
Yr(z1,22,0) =Yr (§ - Eerf (%)) , (14e)

1
Yo(z1,22,0) = Y0, (l + Eerf (1)) , (14e)
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FIGURE 1.  Schematic of the model problem and the computational boundary
conditions.

where A; (i = 1,2) are vortex intensities, (z1,,22;) ( = 1,2) are initial vortex
locations, and erf(z) = 2r /2 [~ e~¢"d¢. The domain is chosen to be [=Lgy, Lz, ] x
[=L:,, Ls,], and that the initial flame is located at z; = 0. The boundary conditions
are non-reflecting outflow boundary conditions of Poinsot and Lele (1992) in z,
direction and periodic boundary conditions in x5 direction. A schematic of the
model problem with initial and boundary conditions is shown in Fig. 1.

2.4 Results

The model problem is solved using the dynamically adaptive wavelet collocation
algorithm described in Section 2.2. The tensor product of two one-dimensional
correlation functions of Daubechies scaling function of order five (Beylkin & Saito,
1993) was used to construct ¥(x). The threshold parameter is set to e = 5 x 1073,
The adaptation of the computational grid is based on the analysis of coefficients
associated with all six dependent variables of Eqgs. (12) and the chemical source
term w,. The irregular grid G& of wavelet collocation points is constructed as a
union of irregular grids corresponding to each dependent variable and the chemical
source term. In the present work we use the 5th order Gear implicit time integration
algorithm implemented in the IMSL routine IVPAG. The time integration step is
chosen so that the truncation error associated with the time integration algorithm
is less than e.

The problem is solved for the following set of parameters:

Re=10%, Pr=1, Scg=Sco= 1, y=14,

=06, =4, EZ=10°, ®=1, Yrow=Y00 =1,

Lyy =4, L;y=1, A=5x10"% Aj=-A;=5x10"2, o, =0, =0.15,
(z1,1,22,1) = (-0.25,0.2), (zy1,2,722) = (—0.25,—-0.2).

These parameters were chosen such that the mixing layer was initially cold; the
diffusion thickness A was initially very thin so that the reaction zone would have
been difficult to resolve with a conventional numerical method. The vortex intensi-
ties and locations were chosen to mimic turbulent eddies. The chemical parameters
were chosen such that the ignition delay time would be relatively short, but the
layer would still be affected by the strain induced by the vortices prior to ignition.
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In Fig. 2, the reaction rate in the entire domain is shown at several times. The
autoignition of the mixing layer occurs between t = 2.50 and ¢ = 3.50 acoustic time
units. At ¢ = 3.50, the ignited diffusion flame at z = 0 is clear, as are two premixed
flames propagating away from the diffusion flame. It is clear that the reaction zone
associated with the diffusion flame is very narrow and requires a very fine grid for
adequate resolution. The reaction zones associated with the two premixed flames
are quite narrow, and to adequately resolve these would also require a fine grid;
the additional challenge here is that the reacting fronts are propagating, so refining
the mesh adaptively provides an enormous computational savings. In these figures
the affect of the vortex pair appears to be almost negligible; the mixing layer still
appears to be effectively one-dimensional.

The pressure associated with the autoignition process is shown in Fig. 3. At
t = 0.50, the hydrodynamic pressure field induced by the vortex pair is still ap-
parent. This is overwhelmed by the enormous pressure wave associated with the
autoignition process by t = 1.50 and thereafter. At the later times, two shock
waves associated with the premixed flames are clearly evident, indicating that these
premixed fronts are weak detonations—weak because, while they are initiated in
nearly stoichiometric gas, they rapidly burn into the extremes of lammability on
either side of the diffusion flame such that the heat release decreases as the flames
propagate and the strength of the associated shock wave goes down. The steep
gradients in the pressure field also pose a challenge in terms of grid resolution.

Fig. 4 shows the computational grid for each of the times shown in Figs. 2 and 3.
At t = 3.50 and t = 5.00, it is clear that the grid has adapted to resolve the steep
gradients in the reaction rate and pressure fields.

Fig. 5 shows a zoomed-in view of the reaction rate during the autoignition event,
and Fig. 6 shows a zoomed-in view of the temperature. During autoignition, the
peak reaction rate is more than an order of magnitude greater than either before
or after autoignition. The affect of the vortex pair on the mixing layer is apparent.
The vortex pair drifts towards the interface, causing strain in the middle of the
mixing layer; this in turn results in a non-uniform reaction rate along the interface.
In particular, the vortex-flame interaction results in the appearance of two hot
spots which eventually lead to autoignition. Since the reaction rate increases with
the temperature, the flame ignites locally at these spots. This process is similar
to that seen by Mastorakos et al. (1997) in two-dimensional turbulent simulations
of autoignition. The ignition process creates two triple-flame structures, similar
in character to those studied by Ruetsch et al. (1995), which propagate rapidly
towards each other and meet at ¢t ~ 3.14. After that time the triple-flames form
into the diffusion flame and two premixed detonation waves traveling away from it.

Figure 7 shows the time evolution of the total number of collocation points or,
effectively, active wavelets as a function of time. We see that the number of grid
points increased at ¢ ~ 3 when the autoignition event occurred. As the detona-
tion waves traveled away from the diffusion flame, their intensity diminished; this
resulted in a decrease of the number of grid points.
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The efficiency of the grid adaptation can be demonstrated by studying the com-
pression coefficient C = N7/N which measures the ratio of the number of grid
points needed in non-adaptive computations N 7 (J is the maximum level of res-
olution used in the computations) and the actual number of grid points used in
the calculations A. In the present calculations we used up to 5 levels of resolution
with an effective resolution (the resolution of the non-adaptive computational grid
needed to perform the same calculation) of 513 x 160 grid points. The time evolution
of the compression coefficient is shown in Fig. 8. We see a drop in the compression
coefficient at t &~ 3; the compression coefficient decreases approximately three times,
which is explained by the appearance of the triple flame structure.

3. Future plans

In spite of the progress made thus far, there are still features of the algorithm
which can be improved upon. In the future we plan to improve algorithm in the
following areas:
1. To extend the existing code to three dimensions.

2. To develop an efficient implicit time integration algorithm which takes advantage
of the multilevel character of the wavelet approximation.

3. To extend the method to complex geometries, which needs to be done if one wants
to attack problems of more general relevance.

4. To adapt the algorithm for efficient use on parallel computers.

In the short term, we plan to incorporate turbulence into the problem. The ability
to resolve local flame structures and pressure waves without a drastic increase in
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the number of grid points should enable us to study turbulent flames at a Reynolds
number higher than currently possible using conventional numerical algorithms such
as those used by Bushe et al. (1997, 1998). As the numerical algorithm becomes
more computationally efficient, we will increase the complexity of the problem in
terms of incorporating a more realistic chemical kinetic mechanism and increasing
the Reynolds number.
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2D simulations of Hall thrusters
By Eduardo Fernandez, Mark Cappelli, AND Krishnan Mahesh

1. Motivation and objectives

Closed-Drift (Hall) thrusters constitute an important electric propulsion technol-
ogy for certain applications requiring low thrust levels, e.g. satellite station keeping
and orbit transfer (Gulczinski and Spores, 1996). The thrust in Hall thrusters is
generated by ions being accelerated through an annular plasma by the electric field
set up between an anode and a cathode. This electric field is strongly coupled to
an externally applied radial magnetic field which typically localizes the electric field
near the channel exit. The ions are generated through electron-impact ionization
of Xenon neutrals. Due to their large inertia, the ions are not magnetized, and
stream out of the device without experiencing very many collisions. The electrons,
on the other hand, collide with the background neutrals as they migrate to the an-
ode across the magnetic field. The cathode is located a few centimeters downstream
of the channel exit and provides enough electrons to supply much of the discharge
current, ionize the incoming neutrals, and neutralize the beam of exiting ions.

While the overall operational characteristics of Hall thrusters are understood,
some key issues remain to be resolved. In particular, the relationship between the
various types of fluctuations in these devices and the overall engine efficiency needs
to be determined. Electron conductivity is critical in the operation of Hall thrusters
since it impacts the ionization of neutrals and the potential drop which accelerates
the resulting ions. However, it’s expected (classical) value, arising from electron-
neutral and Coulomb collisions, is far too low to account for the measured electron
current (Morozov et al. 1972). Two mechanisms have been proposed to account for
the enhanced electron transport (often termed ‘anomalous’ in the plasma physics
literature): electron wall interactions and azimuthal fluctuations in electron density
(Morozov et al. 1972).

It is important that electron diffusion be accurately modeled if the essential
physics of the thruster are to be represented by one- or two-dimensional compu-
tations. State of the art approaches (e.g. Fife et al. 1997) assume that the electron
mobility is given by the ‘Bohm model”

1
=168 (1)

where p is the electron mobility and B is the magnetic field. It is known from
experimental work that this coefficient is only approximate. ‘Bohm diffusion’ is
commonly used to refer to diffusion which scales as % where the scaling coefficient
is arbitrary within a factor of 2 or 3. Early experimental (Janes and Lowder, 1960)
and theoretical (Yoshikawa and Rose, 1962) work has shown that this diffusion
arises from the correlation between fluctuations in the azimuthal electric potential
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and electron density. Given a certain phase between potential and density, the
diffusion coefficient can be cast in terms of the ratio of the rms level of electron
density to the mean electron density. One of the objectives of this work are to
evaluate the modeling of electron diffusion using Eq. (1) and develop alternative
approaches. .

Another issue of interest is the experimentally observed emergence of a virulent
ionization instability in the current saturation part of the I-V curve for these engines
(Meezan et al., 1998). Unlike the azimuthal drift wave fluctuations associated with
axial electron transport, the ionization instability is believed to be deleterious to
engine performance. The more one pushes the engine into the saturation region, the
larger the amplitudes of these modes (rms levels on the order of the mean are not
uncommon). This instability appears to be caused by the non-uniform ionization
of the neutral Xenon atoms. These atoms, emerging from the back of the thruster,
enter a region (ionization zone) in which they are ionized upon colliding with the
electrons. Once ionized, the resulting ions are quickly accelerated, thus creating a
void of both neutral and charged particles. As neutrals replenish the empty region,
ionization takes place and the sequence repeats itself. Since the ion velocity is so
much greater than that of the neutrals, the relevant timescale of the instability
should be proportional to the velocity of the incoming neutral atoms. However,
theoretical work (Fife et al., 1997) suggests that the mode frequency is, in fact,
proportional to the geometric mean of the neutral and ion velocity. That theory
implies that as the ion velocity increases, it actually dominates the mode frequency.
The heuristic picture above, however, suggests that as the ion velocity increases it
progressively decouples from the mode frequency. One of the objectives of this work
is to test the scaling of mode frequency with neutral velocity.

2. Accomplishments

2.1 Approach

Our first step has been to perform two-dimensional hybrid simulations where the
electron mobility is modeled assuming Bohm diffusion (Fife 1995). The govern-
ing equations are those used by Fife, however, details such as the computational
grid, integration scheme, treatment of nonlinear terms, and tracking of heavy PIC
particles in non-uniform grids are different.

The thruster modeled in our work is the SPT 100 Russian thruster for which a
lot of experimental data exists. The computational geometry is as that used by
Fife: it covers the channel and part of the plume.

Figure 1 shows a schematic of the computational geometry. A non-uniform or-
thogonal grid is used to span the thruster annular channel and part of the plume.
The externally imposed magnetic field is obtained by solving a Laplace equation
for the magnetic potential, having specified the geometry of the magnetic poles and
assumed infinite permeability for the pole pieces. The algorithm is a mixture of par-
ticle and fluid approaches. The electrons are treated as a fluid since their effective
mean-free-path is their gyro-radius. The ions, however, typically leave the channel
without colliding with other particles. Also, experiments show that the ion velocity
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FIGURE 1. Schematic of the computational geometry.

distributions vary markedly from Maxwellian. Therefore, the ions are treated as
particles. The neutrals are also treated as particles since they, like the ions, have
mean-free-paths longer than the length of the thruster. The details of the governing
equations are given in Fife (1995); only a short summary is provided here.

The electron momentum equation perpendicular to the magnetic field (mostly
in the axial direction since B is mostly in the radial direction) is given in terms
of a drift-diffusion equation, representing a balance between electric, pressure, and
drag forces. This form neglects inertial terms which are small in the Hall thruster.
The equation can be cast in terms of an electron mobility and diffusion coefficient,
representing the electron momentum response to electric and pressure forces applied
in the axial direction in the presence of collisions; i.e.,

n k

ne(ten — win) = —nep(Ea + %71;%; s @)

However, there is an added contribution to the axial flux which does not arise from
axial electric or pressure forces, but rather from an E x B drift (azimuthal electric
field crossed with radial magnetic field). This component is thus given by nEs /B.
Although there is no mean Ejy, this term is not zero if there are correlated n and Ey
fluctuations. A two-dimensional approach has no azimuthal direction and, therefore,
cannot capture this component. The effect of this term is, therefore, included
through an effective mobility and diffusion. So far, a 1 /B diffusion coefficient has
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been used. Work is underway to incorporate a more realistic, axially dependent
coeflicient. Parallel to the magnetic field, the electric and pressure forces balance
each other, yielding a Boltzman relation.

b=

einne) + ¢ 3)

with the electric field given by E = -V .

An electron temperature equation is also solved. Ionization of neutrals is a strong
function of electron temperature, which makes the electron temperature equation
an important part of the model. The equation is given by:

8.3 8 /5 oT. )
E(Enech) + R (Eneueﬁch - K—Bﬁ) = —n o (T )o(T)E; + jea En  (4)

where ((T.), ¢(T.), and K are the ionization rate parameter, the ion production
cost, and the thermal diffusivity respectively. The functions ((7.) and ¢(T.) have
exponential terms and thus are highly nonlinear. These terms are evolved in their
original forms and are not linearized, unlike Fife (1995). As in the momentum
equation, the diffusivity can be expected to be anomalous. Presently, a simple
(constant) value is taken as described by Lentz (1992). The terms on the right-
hand side of Eq. (4) are the ohmic heating source term and the ionization-induced
sink term. Since thermal conductivity parallel along field lines is much higher than
across field lines, magnetic streamlines are assumed to be isothermal. We use this
assumption and solve the temperature equation along magnetic stream lines as done
by Fife (1995).

Electron continuity is enforced via a total discharge current conservation con-
straint. Since the plasma is assumed to be quasineutral, charge cannot build up
anywhere in the device. Combining electron and ion continuity equations and in-
tegrating (along magnetic field lines) yields an equation stating discharge current
conservation. This is given by:

I, = ‘/j;ne(uiﬁ - ueil)ds (5)

A fourth order Runge-Kutta scheme is used to time advance the temperature
equation — other variables such as electron velocity and electric potential are given
by algebraic expressions once the temperature has been obtained. The boundary
conditions on the temperature are Dirichlet at the cathode and Neumann at the
anode. For the electric potential Dirichlet boundary conditions are specified at the
cathode and anode.

The boundary condition at the anode can pose problems. Several magnetic
streamlines intersect the anode. The issue arises as to what streamline to choose
to impose the boundary condition. As far as the physics is concerned, this region
is clearly not being accurately modeled since the sheath is not being resolved. The
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model equations already imply this: Poisson’s equation is not solved, but rather
quasineutrality is imposed. The concern is, therefore, not whether the the region
close to the anode is accurately modeled, but whether the boundary condition causes
numerical problems. The situation is most problematic in the transient period of
the simulation when the particles and fields have not yet established an equilibrium.
Large oscillations at the anode in temperature and potential, which turn into large
oscillations in ion velocity and plasma density, develop and are convected down-
stream. If severe enough, these oscillations can terminate the simulation. These
anode oscillations are also very problematic when one changes the diffusion coeffi-
cient.

As stated before, the ions and neutrals are evolved with a PIC approach. Since
quasineutrality is enforced, determining the ion density by interpolating to the grid
points also determines the electron density. Ion-neutral elastic, and charge exchange
collisions are ignored since their cross sections are small. Therefore, a neutral
changes its velocity only when it encounters a wall, in which case it is repelled back
in a random direction. The only force acting on the ions is the electric field (the
magnetic force is ignored due to the large ion inertia). When an ion strikes the
wall, it recombines to form a neutral which is injected back in the domain at a
random angle. Since the thruster has regions with sharp contrast of plasma and
neutral density, the ion or neutral superparticle masses are not identical. Also, the
algorithm uses a fractional time-advance step method. The fast time scale in the
system is tied to electron dynamics whereas neutral and ion motion is much slower.
In view of this fact, the neutrals and ions are time advanced every so many electron
time steps. A standard leap frog scheme is used for the time advancement in the
PIC approach.

2.2 Results

2.2.1 Evaluation of Bohm diffusion

The Bohm diffusion model for electron transport (Fife 1995) is evaluated in this
section. Our simulations show that for the SPT configuration, the use of Bohm
diffusion, as given by Eq. (1), yields electron density and ionization profiles that
peaks too far upstream as compared to experimental data, while the temperature
and electric field actually peaks downstream of the channel exit. Experimentally
it is observed that all the above profiles tend to peak roughly at the same axial
location, at the exhaust of the channel (Bishaev and Kim 1972).

This discrepancy is interpreted as being due to a diffusion coefficient which is too
large: the larger electron current produces too much ionization upstream, thereby
quickly depleting the neutral density. This resultsin ionization-induced temperature
losses downstream that are low while the temperature source term is still high
through the large electric field. Consequently, the electron temperature peaks too
far downstream.

It is instructive to note that that a 1D version of the numerical model which used
a 1ap diffusion coefficient was previously used by Lentz (1992) to simulate a short
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FIGURE 2. Time history of the discharge current in a simulation with discharge
voltage of 200 volts and mass flow rate of 3mg/s.

channel, high magnetic field Japanese thruster. In that case, the simulated and ex-
perimental profiles were in better agreement. This suggests that different thrusters
are likely to have different fluctuation characteristics and electron transport, and
that the often quoted ﬁ is not likely to apply to every thruster. In fact, a recent
study aimed at modeling an American-designed thruster showed that the model
reproduces the overall characteristics with a mobility of ;25 (Szabo, et al. 1998).
Even if it applies to a given thruster, it’s not likely that a fixed ﬁ- value would be
successful as one varied the operational parameters since the fluctuations themselves
are a strong function of the current-voltage operational point. The relative impor-
tance of fluctuation-induced electron transport versus collisional transport depends
on the relative value of the gyro-frequency and collisional frequency. While in the
Japanese thruster the electron gyro-frequency was much larger than the collision
frequency throughout the channel (due to the broad, large magnetic field), in the
SPT these frequencies are not disparate close to the anode. However, at the channel
exit the electron gyro-frequency is more than two orders of magnitude larger than
the collision frequency. Therefore, one expects the diffusion to be a function of axial
position.
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FIGURE 3. Time history of the discharge current in a simulation with discharge
voltage of 200 volts and mass flow rate of 3mg/s. The difference from Fig. 2 is the
wall ion-neutral recombination mechanism.

2.2.2 Importance of heavy particle-wall interactions

The importance of electron-wall interactions has been discussed in the literature.
Our simulations indicate that wall interactions involving heavy particle collisions
also have a large influence on overall discharge dynamics. When ions strike the
walls, they recombine to form neutrals. If the recombined neutrals have large kinetic
energy they have a greater chance of leaving the channel before being ionized. This
will tend to lower the discharge current for a given discharge voltage. The converse
hold as well.

Figure 3 shows the time history of the discharge current for the same parameters
as those of Fig. 2, but with different heavy particle-wall interaction. In Fig. 2,
ions that strike the walls recombine to form neutrals which emerge at random
direction with the ion’s velocity. In Fig. 3, the recombined neutrals are injected
back with random directions with the inflow neutral velocity. We see that the effect
on discharge current is significant. The average discharge current is 2.5 amps as
compared to the experimentally measured 3.1 amps. Given the strong sensitivity of
the results to the chosen diffusion coefficient, it is not that meaningful at this point
to comment on the quantitative difference between simulation and experimental
results. The effect of the heavy particle wall interaction is also seen on plasma
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FIGURE 4. Scaling of mode frequency with neutral velocity.

density: Fig. 3 corresponds to a higher plasma density than Fig. 2. The reason
for the rise in discharge current (or plasma density) in the second case is that
the neutrals coming off collisions with the walls, having lower speed, have a larger
chance of being ionized. In reality, the speed of the neutrals after the collision will
depend on the wall temperature as well.

2.2.8 Scaling of low frequency oscillations

Recall that characterizing the strong, ionization instability is of special interest for
Hall thrusters as it sets limits to the operation of these engines. Figure 2 shows the
time history of the discharge current for a simulation with discharge voltage of 200
volts, mass flow rate of 3mg/s, and peak magnetic field of 180 gauss. One observes
that the steady state achieved is non-stationary, with large 7 kHz oscillations. This
mode corresponds to the ionization instability described above. Superimposed on
the dominant mode lie higher frequency components. The discharge current oscilla-
tions are about 20 per cent of their mean values. A simulation run with a flow rate
of 5mg/s but with otherwise same parameters (including the same neutral velocity
at the inflow) gives oscillations of about 60 per cent. Similarly, as one increases
the voltage in the current saturation portion of the current-voltage curve, the rms
oscillations are expected to increase. While high mass flow rates and high voltages
are desirable, the ionization instability becomes very virulent and can extinguish
the discharge, thus setting a limit on the operation of these engines.
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Fife's et al. (1997) analysis of the ionization instability shows that the mode
frequency scales as the geometric mean on the neutral and ion velocities. However,
the theory is based on a small perturbation analysis which may not apply given the
large rms levels of the instability. Intuitively, cne rather expects the frequency to
scale linearly with the neutral velocity, especially as the ion velocity tends to be
much larger than the neutral velocity. The linear relationship is, in fact, observed in
Fig. 4. The parameters for the simulation are the same as those in Fig. 2. We only
changed the velocity of the neutrals at the inflow, while keeping the mass flow rate
constant. The inverse of the slope of the linear fit through the data points yields a
length of 4.3 cm. This length should reflect the extent of the ionization region. In
fact, this region in the simulation is probably only 3 cm. The characterization of the
mode frequency as the neutral velocity divided by the ionization region thus appears
to be only qualitatively valid in view of the simulation results. Similar simulations
with other voltages and mass flow rates should be performed to better characterize
this mode. In particular, the notion that this mode is non-propagating (in the axial
direction) and thus acts more as a standing wave needs to be reexamined. Present
simulations suggest that the peak of the ionization rate profile moves back and forth
about .75 centimeters axially, which would imply that the mode in fact propagates.
Further simulations are warranted in view of the fact that previous simulations have
not reported or seen this effect.

3. Conclusions and future plans

Two-dimensional simulations of the Hall thruster have been performed as a first
step in an ongoing computational effort at CTR. The simulations reproduce some
of the overall features observed in experiments such as the strong ionization insta-
bility. A linear relationship between the frequency of the instability and the neutral
velocity at the inflow is predicted.

Modeling electron transport assuming Bohm diffusion is found to be problem-
atic. The model results strongly depend upon the Bohm diffusion coefficient and
can disagree strongly with experiments if appropriate values are not chosen. The
thruster dynamics are also strongly influenced by heavy particle-wall interactions.
We believe that improving the form of the diffusion coefficient will greatly improve
the results. The theory of Yoshikawa and Rose serves as an excellent starting point
in this task: the diffusion coefficient will no longer be a fixed value, but will rather
depend on fluctuation amplitudes, becoming an axially-dependent ‘eddy diffusiv-
ity’. Alternatively, work is underway to extract a diffusion coefficient by fixing the
location of the ionization region, which can also be obtained from the magnetic field
profiles.

Preliminary numerical experiments in which a magnetic field perturbation has
been superposed to the equilibrium were performed. The results (not shown) sug-
gest that the strong discharge current oscillation can be affected by applying a
perturbation of the same frequency as the natural mode. By adjusting the phase of
the applied perturbation, we were able to suppress the mode for about one and one
half periods before it developed again. We must caution, however, that the form of
the diffusion coefficient could greatly affect these results.
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Another numerical experiment to be attempted in the near future consists of in-
Jecting a small amount of xenon neutrals from the exit computational boundary.
This is meant to model the experimental situation in the laboratory in which a
vacuum is never completely achieved. The neutrals can potentially affect ioniza-
tion rates, electron temperature, and maybe even more importantly, the ionization
instability. A quantitative prediction on the effect of these neutrals on engine per-
formance would prove to be quite useful.
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Computation of trailing-edge noise at low
Mach number using LES and acoustic analogy

By Meng Wang

1. Motivation and objectives

The present work is a continuation of the work described in the previous annual
research briefs (Wang 1996, 1997). The objectives of the project are twofold: (1) to
develop numerical prediction methods for trailing-edge noise, using a combination
of large-eddy simulation (LES) and Lighthill’s theory; and (2) to generate a reliable
numerical database for the study of noise source mechanisms.

Trailing-edge aeroacoustics is of importance in both aeronautical and naval ap-
plications. It is, for example, related to airframe noise, rotor and propeller noise,
and noise from underwater vehicles. When turbulent boundary layer eddies are
convected past the trailing edge of a large (relative to acoustic wavelength) body,
their aeroacoustic source characteristics are modified by the edge, and a more effi-
cient source results (Ffowcs Williams & Hall 1970; Crighton & Leppington 1971).
This scattering mechanism produces strong, broadband radiation to the far-field.
If there is coherent vortex shedding, typically associated with blunt trailing edges
and/or high angles of attack, tonal or narrowband noise is also present. In addi-
tion, the highly unsteady edge flow may cause low frequency vibration of an elastic
strut and hence noise radiation. To determine the structural vibration modes, the
space-time characteristics of surface-pressure fluctuations are frequently required as
a forcing-function input.

The case under study corresponds to the experiment conducted by Blake (1975).
The flow configuration is shown in Fig. 1. A flat strut with a circular leading
edge and an asymmetrically beveled trailing-edge of 25 degrees is placed in a uni-
form stream at zero-degree angle of attack. The strut’s chord is C = 21.125k and
span is L = 23.5h, where h is the thickness. The Reynolds number based on free-
stream velocity Us and the chord is 2.15 x 10%. The free-stream Mach number
M = Uso/coo ~ 0.088. Statistical measurements of velocity and fluctuating surface
pressure fields in the trailing-edge region are available for comparison with compu-
tational results. Acoustic measurements were not made in this experiment although
they were made in a separate experiment (Blake & Gershfeld 1988) under different
flow conditions, using trailing-edges similar but not identical to the one in Fig. 1.

In the next section we first summarize the LES of the near-field, which pro-
vides the acoustic source functions (the fluctuating Reynolds stress) as well as the
space-time characteristics of surface pressure fluctuations. The statistics are fully
converged and should supersede the preliminary results presented in Wang (1997).
Next, we discuss the computation of the radiated far-field noise. The calculations
are based on an integral-form solution to the Lighthill equation with a hard-wall
Green’s function (Ffowcs Williams & Hall 1970).
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FIGURE 1. Flow configuration and computational domain. The experimental

measurement stations B-G are located at z/h = —4.625, —3.125, —2.125, —1.625,
—1.125, and —0.625, respectively.

2. Accomplishments

2.1 Update on near-field LES

2.1.1 Methodology

A detailed description of the numerical algorithm and procedure can be found in
Wang (1997). The spatially filtered, unsteady, incompressible Navier-Stokes equa-
tions are solved in conjunction with the dynamic subgrid-scale model (Germano et
al. 1991; Lilly 1992). The numerical scheme employs second-order central differ-
ences in the streamwise and wall-normal directions and Fourier collocation in the
spanwise direction. A semi-implicit (Crank-Nicolson for viscous terms and third
order Runge-Kutta for convective terms), fractional-step scheme is used for time
advancement. The pressure Poisson equation is solved at each Runge-Kutta sub-
step using a multi-grid iterative procedure.

Simulations are conducted in a computational domain containing the aft section
of the strut and the near wake, as illustrated schematically in Fig. 1. Except for
the inlet, the other three sides of the domain have been truncated for clarity. The
actual domain size is approximately 16.5k, 41k, and 0.5k, in the streamwise (z;),
wall normal (z2), and spanwise (z3) directions, respectively. The computational
grid, defined in curvilinear coordinates in the z;-z, plane and Cartesian coordinate
in z3, uses a total of 1536 x 96 x 48 points, with appropriate clustering in the
near-wall and trailing-edge regions. Of the 1536 streamwise grid points, 640 are
distributed along the upper surface, 512 along the lower surface, and 2 x 192 along
the wake line (branch cut). The maximum grid-spacing along the strut surface,
measured in wall units, is Az] =~ 62, Azt =~ 55, and Az'{ ~ 2. The simulation,
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FIGURE 2. Profiles of the normalized mean velocity magnitude as a function of
vertical distance from the upper surface, at stations (from left to right) C, D, E,
F,and G. LES; e Blake’s experiment. Individual profiles are separated by a
horizontal offset of 1 with the corresponding zero lines located at 0, 1, ..., 4.

running at a maximum CFL number of 1.5, requires 200 single processor CPU
hours on a CRAY C90 to advance one flow time across the streamwise domain
length, and over 1000 CPU hours for the complete simulation. The velocity and
pressure statistics presented below are collected over a period T,Us/h ~ 60.62, or
3.67 flow-through times based on free-stream velocity.

The inflow velocity profiles outside the boundary layers are provided by an auxil-
iary RANS calculation in a C-grid domain enclosing the entire strut, using Menter’s
(1993) SST k-w model. Within the turbulent boundary layers, the time-dependent
inflow velocities are generated from two separate LES’s of flat-plate boundary layers
with zero pressure gradient, using the method described by Lund, Wu & Squires
(1998). The local momentum thickness and Reynolds number are matched with
those from the RANS simulation. At the downstream boundary the convective out-
flow condition (Pauley, Moin & Reynolds 1988) is applied. The top and bottom
boundaries are placed far away from the strut to minimize the impact of the im-
posed velocities obtained from RANS calculations. A no-slip condition is applied
on the surface of the strut.

The letters B, C, D, E, F, and G in Fig. 1 indicate measurement stations in
Blake’s experiment. They are located at z,/h = —4.625, —3.125, —2.125, —1.625,
—1.125, and —0.625, respectively (the Cartesian coordinate system originates from
the trailing edge). In Section 2.1.2 representative results are presented at these
stations, and comparisons made with experimental values.

2.1.2 Simulation results

In Fig. 2, the magnitude of the mean velocity U = (U + U2)1/2 normalized by its
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FIGURE 3. Profiles of the rms streamwise velocity fluctuations as a function of
vertical distance from the upper surface, at stations (from left to right) B, D, E,
F, and G. LES; e Blake’s experiment. Individual profiles are separated by
a horizontal offset of 0.15 with the corresponding zero lines located at 0, 0.15, ...,
0.60.

value at the boundary-layer edge U, is plotted as a function of vertical distance from
the upper surface at streamwise stations (from left to right) C-G. The solid lines are
from LES, and the symbols represent Blake’s experimental data. Good agreement
with the experimental results is obtained at station C and all the upstream locations.
At stations D and E, where the boundary layer is subject to strong adverse pressure
gradient (cf. Fig. 4) but remains attached to the wall, the LES profiles are more full
in the near-wall region than those from the experiment. Further downstream, as an
unsteady separated region develops, the discrepancy diminishes, and the computed
profiles compare well again with the experimental results at stations F and G.

Figure 3 compares the computational and experimental profiles of the rms stream-
wise velocity fluctuations at stations (from left to right) B, D, E, F, and G. The
agreement between the LES and the experimental results is quite good except in
the near-wall region and at the last two stations. The experimental profiles are
seen to consistently miss the near-wall peaks known to exist in turbulent boundary
layers, suggesting a possible lack of spatial resolution or high-frequency response
as the probe approaches the wall. The large discrepancy observed in the separated
region (stations F' and G) may be caused by both simulation and measurement
errors. In general, hot-wire readings become increasingly difficult to interpret if the
rms turbulence intensity exceeds 30% of the local mean velocity (Bradshaw 1971),
which is the case in the separation bubble where the mean velocity is very small
(cf. Fig. 2).

The dimensionless mean pressure (= C,/2) is depicted in Fig. 4 as a function of
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FIGURE 4. Mean surface pressure distribution near the trailing edge. LES;

o Blake’s experiment.

z1/h. The comparison between the LES and experimental results is reasonable in
the trailing-edge region but unsatisfactory upstream of it. The experimental data
plotted here differ from those documented by Blake (1975) and referenced by Wang
(1997) earlier. The new data set, based on the original record of his 1975 experi-
ment, was provided by Blake (1998, private communication) after the completion of
the present LES. Of particular interest is the additional data point measured on the
lower surface (the upper point at z; /h = —7.125 in Fig. 4), which sheds some light
on the fidelity of inflow velocity conditions used in the simulation. Based on this
point and assuming that the mean pressure is approximately constant on the lower
surface as suggested by the LES prediction, it is evident that the lift and hence
circulation in the experiment are much smaller than those in the LES. Since the
circulation in the LES is imposed through the unequal mean velocity profiles on the
two sides of the strut at the inlet boundary (cf. Fig. 2 in Wang 1997), one concludes
that the inflow velocity difference has been exaggerated. Indeed, an estimate using
C,p and the Bernoulli equation indicates that in the experiment the inflow veloc-
ities at the boundary layer edges are UPP¢" ~ 1.071Uy and Ulewer 2 1.032U,
compared with U2PPe" = 1.093U and U:°"’" ~ 0.979U used in the LES. Unfor-
tunately, the several RANS calculations conducted earlier using different turbulence
models all predict circulations much larger than the experimental value. The one
chosen to provide the LES inflow profiles actually has the smallest circulation.
Figure 5 shows the space-time correlations of the upper-surface pressure fluctua-
tions as a function of temporal and spanwise separations at stations C-G and the
trailing edge (actually, one half grid spacing from the edge on the staggered mesh).
The iso-correlation contours show relatively small variations of the spanwise spatial
and temporal scales from stations C to E underneath the attached boundary layer
with adverse pressure gradient. A dramatic increase of spatial and temporal scales
occurs, however, after the turbulent boundary layer becomes separated (stations
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FIGURE 5. Contours of space-time correlation of the upper-surface pressure fluc-
tuations as a function of spanwise and temporal separations, at stations (a) C; (b)
D; (c) E; (d) F; (e) G; and (f) trailing-edge. Contour values are from 0.1 to 0.9,
with increment 0.1.

F, G, and the trailing edge). The wall pressure fluctuations inside the separated
zone are dominated by the effect of large scale fluid motion. The small scale eddies
from the upstream boundary layer are lifted away from the wall and hence their
contribution to the wall pressure is diminished. At the trailing edge, the correlation
contours exhibit some features of small-scale correlation superimposed on the ex-
tremely large overall scales, because of the contribution from the attached boundary
layer on the lower side of the edge.

It is noted that the correlation contours in Fig. 5 show insufficient drop at max-
imum spanwise separations inside the separated region, particularly at station G
and the trailing edge. This suggests that the computational domain is too restric-
tive in the spanwise direction to allow the development of fully three-dimensional
large-scale flow structures. The effect of the small spanwise domain size on the low-
order flow statistics described above has not been investigated. In addition, it has
important implications to the acoustic prediction, as will be discussed in Section
2.2.

Figure 6 depicts the frequency spectra of wall pressure fluctuations calculated
from LES and compares them with those from Blake’s experiment. The variables
used for normalization are U, h, and the dynamic pressure ¢o, = pU2 /2. The
calculated spectra agree relatively well with the experimental data at most stations
except station G, where the spectrum is significantly overpredicted. One notices
that before the boundary layer separation (stations C-E), the LES spectra drop
off more quickly than the experimenial spectra at the high frequency end due to
limited grid resolution and finite difference errors. The high frequency content
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FIGURE 6. Frequency spectra of wall pressure fluctuations at stations (a) C; (b)
D; (c) E; (d) F; (e) G; and (f) trailing-edge. LES; e experiment.

corresponds to fine spatial structures not resolved on the simulation grid. After the
separation, however, the small scale effect is diminished, and the LES is capable of
capturing the entire frequency range measured by the experiment. The spectrum
at the trailing edge, where no experimental data are available, again consists of
contributions from the upper (separated) and lower (attached) boundary layers.
The latter is responsible for the high frequency peak shown in the figure.

2.2 Noise computation

2.2.1 Formulation

The noise radiation to the far-field is calculated in the framework of Lighthill’s
theory (Lighthill 1952). Crighton & Leppington (1971) show that the trailing-
edge noise field has a non-multipole character, which is caused by the fact that the
scattering surface is noncompact relative to the acoustic wavelength. To account for
the surface reflection effect, a hard-wall Green’s function, whose normal derivative
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FIGURE 7. Coordinate system for calculating the radiated noise of flow past the
trailing-edge of a semi-infinite flat plate.

vanishes on the surface, must be employed in an integral solution to the Lighthill
equation.

When the acoustic wavelength is much longer than the thickness of the strut but
much shorter than the chord (h €« A; < C), the strut is reasonably approximated
by a semi-infinite plane with zero thickness, for which the far-field Green’s function
is known analytically. The far-field pressure perturbation in the frequency domain
can be written in the form (Ffowcs Williams & Hall 1970)

2e7t % 6 [ e*E (sin ¢>)% - o
Aa s ~ k2 1 _/ —_— 0 2 - 2 1 pu—
Pa(z,w) L PN ey (2kro)} {p (uo ur) sin 5

—2pooti g COS %9-} dy. (1)

where the caret denotes temporal Fourier transform, w is the circular frequency,
and k = w/ce the acoustic wavenumber. The velocity components u, and ug are
defined in a cylindrical-polar coordinate system shown in Fig. 7. Position vectors &
(r, 6, z) and y (ro, 6o, z0) represent far-field and source-field points, respectively,
with R = |z — y| and sin¢ = r/[r? + (z — 20)]%.

In addition to the approximate Green'’s function, several assumptions are implied
in (1). The viscous stress is assumed unimportant as a noise source at high Reynold
numbers. The convection, refraction, and scattering of acoustic waves by the tur-
bulent flow are ignored, which is justifiable in the low Mach number limit except
at very high frequencies and/or at @ values close to zero or 7. Furthermore, the



Trailing-edge noise computation 99

integrand in (1) is derived for a source region well within one acoustic wavelength
(kro € 1 or ro € Ag). Although only eddies within this distance contribute to the
amplified scattering noise, from a computational point of view it may be desirable
to integrate further out for better convergence (boundary-independence of the vol-
ume integral), given the (kro)~3/? decay of the Green’s function factor. A more
general integral expression valid for all ro values is given in Wang (1996). However,
noise calculations using both integrals show only a small difference, and hence the
simpler expression (1) will be used here.

2.2.2 Evaluation of source terms

In the context of LES, the Lighthill stress is formally expressed as T:; = puiu; +
pTij, where the overline indicates spatial filtering and the entropy and viscous terms
are ignored. It consists of nonlinear interactions among resolved scales (first term)
and the subgrid scale contribution to the resolved scales (second term). Piomelli,
Streett, & Sarkar (1997) examined the effect of small scales on sound generation
using a channel flow DNS database. In the present computation, the Lighthill stress
terms are evaluated using the resolved velocity components only, assuming that the
subgrid scale contribution is relatively small. It is noted that the dynamic SGS
model used in the source-field simulation gives only the anisotropic part of the
SGS stress tensor, 7i; — 6;jTkx /3, and thus the normal stress components cannot be
determined. If one desires to include pri; in the noise calculation, an alternative
formulation of the SGS model such as the dynamic localization model (Ghosal et
al. 1995), which solves an additional equation for the subgrid-scale kinetic energy
Tk /2, should be used.

To compute the source terms u} — u2 and —2u,uy in (1), the Cartesian velocity
components u; and uz on the entire computational grid are saved every 10 time
steps during the source-field LES. The sampling resolution At,Us/h & 0.029. The
total record of N = 1152 time samples, covering a period T,Us/h ~ 33.47, is
divided into 8 segments with a 50% overlap. For each segment, which contains 256
samples, the source quantities u3 — u? and —2u,ug are computed. The aperiodic
time series are multiplied by the Hanning window function, and discrete Fourier
transforms are performed. To compensate for the energy loss due to the Hanning
window tapering, the resulting Fourier coefficients are renormalized such that the
power spectrum computed from them, when integrated over all positive frequencies,
gives the mean-square fluctuations of the original function.

As a result of the above procedure, 8 sets of the source terms as a function of
frequency w and spatial coordinates y are available. Each set can be used in (1)
to give a sample noise field. The noise power spectra are obtained as the ensemble
average of the spectra from all sample fields.

Figure 8 depicts the magnitude of the Reynolds shear-stress source term (nor-
malized), | — 2i,ug|/UZ, in the trailing-edge region at 4 selected frequencies. The
other source term representing the normal stress behaves in a qualitatively similar
manner. The source magnitudes are averaged over the 8 samples and the spanwise
direction. The contour lines show that the spatial distribution of the acoustic source
varies significantly with frequency. The low frequency source, associated with the

—
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FIGURE 8. Contours of the magnitude of the acoustic source term —2u;up/U2, at
four different frequencies. Contour levels (x10?): (a) 0.20 to 3.40, with increment
0.20; (b) 0.20 to 3.00, with increment 0.20; (c) 0.10 to 1.40, with increment 0.10;
(d) 0.03 to 0.42, with increment 0.03.

large scale unsteady flow structures, exhibits strength in a large region including
the wake (cf. Figs. 8a and 8b). The largest values are found in the shear layers em-
anating from the upper (separated) and lower (attached) boundary layers. As the
frequency increases (Figs. 8c and 8d), the source distribution becomes more con-
centrated, particularly in the lower shear layer close to the trailing edge. The wake
region farther from the edge contributes little to the high-frequency source terms
due to a lack of the corresponding small-scale flow structures. In the convolution
integral (1), the source terms shown in Fig. 8 are weighted by a (kro)~3/2 factor,
and thus the effective noise source is much more concentrated in the trailing-eddy
region.

2.2.3 Radiated field

Trailing-edge noise from a source region consisting of the computational domain
can be readily obtained by evaluating the volume integral (1) numerically. As an
example, Fig. 9 shows the contours of the real part of the acoustic pressure p, /Poo
in the z1-z2 plane crossing the mid-span, for wh/Us = 1.68 and 6.75. The trailing
edge is located at z; = r; = 0, and the Mach number used in this example is
M = 0.1. In the figure the frequency dependence of the wavelength and amplitude
is evident, as is the distinct edge-noise directivity pattern dictated by the sing
factor in (1). The noise spectra can be obtained from the product of p, and its
complex conjugate. It should be mentioned that Fig. 9 is based on a single sample
of source functions. Statistical averaging can be done after the noise spectra from
multiple source samples have been obtained.
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FIGURE 9. Contours of the real part of the acoustic pressure pa(X,w)/Peo from
sources within the LES Domain at M = 0.1, at two different frequencies. Contour
levels (x10%): (a) —5.70 to 3.90, with increment 0.60; (b) —0.255 to 0.255, with
increment 0.03.

In a typical LES, the spanwise width L, of the computational domain is only a
small fraction of the actual span L. For example, L/L, = 47 for the present LES
of Blake’s experiment. To predict the frequency spectrum of the sound pressure
radiated from the entire span, one requires knowledge about the spanwise coherence
of the source field. Kato et al. (1993) discussed this issue in their calculation of
noise from a cylinder wake. Let A, = A,(w) denote the coherence length for a given
frequency, two limiting cases can be found for which the total noise is well defined.

(a) If L, > A,, source regions separated by the computational box size radiate
in a statistically independently manner. Hence, the total noise spectrum is the sum
of contributions from L/L, independent source regions along the span: @:,‘;“” =
(L/L:) ®pa-

(b) If L < A, the source is coherent along the entire span (2-d source). Based
on (1), if the spanwise variation of the retarded time is ignored, petal ~ (L/L,) Pa,
and hence ®19/*! ~ (L)L) ®pa.

In the intermediate regime L, < A, < L, an accurate prediction of the total
sound pressure is difficult to achieve. The computational domain is too small to
accommodate the spanwise flow scales, and thus the acoustic source functions are
not computed reliably. The rigorous remedy is to increase the computational box
size L, so that case a or b described above applies. This is, however, often pro-
hibitively expensive. Kato et al. (1993) resorted to an ad hoc approach in which
A, is approximated by extrapolating from the slowly-decaying coherence function,
and a hybrid formula based on cases a and b is used to estimate the total noise
radiation.
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FIGURE 10. Frequency spectra of the far-field noise at »/h = 150 and M = 0.088.
Spectrum calculated from a partial source field (the LES domain); ---- total
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spectrum using periodic source extension in span.

Another ad hoc approach employed by previous investigators is the periodic ex-
tension of the computed source field to the entire span. The volume integral (1) is
then taken over the expanded domain. This approach is essentially equivalent to
the approach used in case b described above except that the integration takes into
account retarded-time variations along the span. Manoha, Troff & Sagaut (1998)
used this method in their calculation of the noise from a blunt trailing edge of a flat
plate.

In Fig. 10 several noise spectra are plotted as a function of frequency at r/h = 150
and M = 0.088. Note that the normalization factor for the spectra includes Mach
number dependence and directivity. The solid line is computed from the thin slab
of the source field within the LES domain. The total noise spectrum under the
incoherent source assumption (case a) is given by the dashed line, whereas the
coherence source calculation (case b) gives the chain-dashed line (the top curve).
These two curves serve as the lower and upper bounds of the true noise spectrum.
The spectrum calculated using periodic source extension in r3, shown as the dotted
curve, coincides with that from the coherence-source calculation at low frequencies
but drifts to lower values at higher frequencies due to the increasing importance of
retarded time variations.

The frequencies corresponding to A, = C and h are given by wh/U,, =~ 3.38 and
71.4, respectively. They define the frequency range in which the half-plane Green'’s



Trailing-edge noise computation 103

function is approximately valid. Qutside this range other appropriate Green’s func-
tions should be used. In particular, when A, > C, the strut is acoustically compact
and thus the free-space Green'’s function is applicable. Curle’s (1955) integral solu-
tion to the Lighthill equation provides a useful tool for noise computation (Wang,
Lele, & Moin 1996). At high frequencies (A; < k), the Green’s function must in
principle be tailored to the specific trailing-edge shape. However, the potential accu-
racy improvement is limited, given the relatively small tip-angle of the edge and the
competing high-frequency errors caused by the neglect of flow-acoustic interaction
and subgrid-scale contribution to the acoustic source functions. The local spectrum
peak in Fig. 10 near wh/Uq = 23.6 is caused by the diffraction of boundary layer
eddies from the lower side.

As pointed out previously, Blake’s (1975) experiment does not include acoustic
measurements, and thus a direct comparison with the numerical predictions cannot
be made. As a qualitative assessment, the acoustic pressure spectra from a different
experiment (Blake & Gershfeld 1988) have been used to compare with the spectra
shown in Fig. 10. The experimental data (not shown) are found to be concentrated
at the low frequency end and lie between the coherent-source and incoherent-source
predictions.

A complete determination of the far-field noise requires the spanwise coherence
of the source-field to be computed. For a given field quantity g, the coherence is
defined as

|®gq(z, 7, w)?
|®gq(x,0,w)|[Rgq( + 7, 0,w)|’

Y (2, W) = (2)
where the cross spectrum function @, is the Fourier transform of the space-time
cross correlation function

oo

Byql,7,w) = / (a(@, )a(z + 7.t + T))e ™ dr. 3)

-0

An estimate of 42 is made based on the fluctuating surface pressure (¢ = p) in
the vicinity of the trailing edge under the premise that it is representative of the
overall coherence of the volume distribution of source terms in (1). Figure 11 shows
the spanwise pressure coherence on the upper surface, one half grid spacing from
the trailing edge. The left plot shows the iso-coherence contours as a function of
frequency and spanwise separation. The coherence is seen to drop rapidly with
spanwise separation except at the low frequency end. The coherence at selected
low frequencies is depicted in the right plot as a function of spanwise separation.
It is observed that for wh/Us > 5.26, the coherence exhibits sufficient drop within
the computational domain, and thus ®%*! ~ (L/L.)®p, applies. The dashed
curve in Fig. 10 gives the total noise spectrum. Below this frequency, however, the
coherence length is larger than the spanwise dimension of the computational box,
and the total noise cannot be determined with certainty. Given the flat shape of 2
at large separations shown in Fig. 11 (the solid and dashed lines), it is not possible
to obtain the coherence lengths by extrapolation as in the case of Kato et al. (1993).



104

M. Wang
0.25 - 1.0 <
(®)
TR
& E@
o 087 '\ e
= Q vl Tt
~ a .; LT e
§ g i
4 S 044 3
) v
© Y
0.2 ‘x\t\ )
W T
Vpme
4 . o
0.2 0 005 010 015 020 025
wh/Uq Azy/h
FIGURE 11.

Spanwise coherence of the fluctuating surface pressure on the upper
surface near the trailing edge. (a) Contour plot (contour levels from 0.1 to 0.9,

with increment 0.10). (b) Coherence at frequencies wh/Uy = 1.75 (—— ), 3.51
(====),5.26 (------ ), 7.01 (—-—), and 8.76 (—-— ).

3. Summary and future work

A large-eddy simulation has been carried out for turbulent boundary layer flows
past an asymmetrically beveled trailing-edge of a flat strut at a chord Reynolds
number of 2.15 x 10°. The asymmetric edge of 25 degree tip-angle produces a
separated boundary layer on one side and an attached boundary layer on the other.
The computed mean and fluctuating velocity profiles compare reasonably well with
the experimental measurements of Blake (1975). The discrepancies observed at some
stations (D, E for mean velocity and F, G for fluctuating velocity) may have been
caused by inadequate inflow velocity conditions and small computational domain
size as well as possible experimental errors near the wall and inside the separated
region.

The inflow velocity profiles constitute a major uncertainty for the LES since they
are not available from Blake’s experiment. Based on the additional mean surface
pressure data provided recently by Blake, it appears that the RANS calculations
used to provide the inflow mean velocities have exaggerated the difference between
velocities on the two sides of the strut, and hence the circulation. This is evidenced
by the significant discrepancy between the mean surface pressure distributions from
LES and the experiment.

Thus, future simulations should use more accurate inflow velocity profiles associ-
ated with a smaller circulation. The exact profiles are, however, difficult to obtain
without additional experimental measurements. While it is possible to deduce from
the experimental C, data the approximate velocity magnitudes at the boundary

layer edges near the inflow boundary, this approach does not give the detailed pro-
files extending to the outer computational boundary.
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The objectives of the trailing-edge flow LES are to predict the space-time charac-
teristics of surface pressure fluctuations and to provide the acoustic source functions
for the far-field noise calculation. The frequency spectra of surface pressure fluc-
tuations obtained from LES agree well with experimental measurements at most
stations. The cause for the significant overprediction at station G needs to be fur-
ther investigated. The space-time correlations of the fluctuating surface pressure
demonstrate a dramatic increase in temporal and spanwise spatial scales beneath
the unsteady separation region. The correlation functions near the trailing-edge
show insufficient drop at maximum spanwise separations, suggesting the need for a
wider computational domain.

The far-field acoustics is computed from an integral-form solution to the Lighthill
equation using a hard-wall Green’s function (Ffowes Williams & Hall 1970). The
Green’s function is approximated by that for an infinitely thin half-plane, given
the thin foil (relative to acoustic wavelength) and the small included angle of the
trailing-edge. The acoustic evaluation is performed in the Fourier frequency domain
and requires the storage and processing of large amount of time-dependent, three-
dimensional source field data obtained from LES. Computations have been carried
out to determine the source-term characteristics and the far-field noise spectra. To
accurately predict the noise radiation from the entire span using a partial source field
included in the LES domain, it is required that the spanwise domain size be larger
than the coherence length of the source field in that direction. The present LES is
found to be adequate for predicting noise radiation over a wide frequency range. At
low frequencies, however, the spanwise source coherence estimated based on surface
pressure fluctuations does not decay sufficiently. This issue will be addressed in
future simulations using an expanded computational domain.
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Weakly nonlinear modeling of the
early stages of bypass transition

By S. A. Maslowe

1. Motivation and objectives

Under ideal conditions, boundary layer transition occurs in a six-stage process
described, for example, by Stuart (1965). The first stage is that of linear instability,
and its onset is predicted accurately by two-dimensional normal mode solutions
of the Orr-Sommerfeld equation. In the Blasius case, the critical Reynolds number
based on displacement thickness is approximately Res = 520 and the exponentially
growing modes observed at slightly larger values of Res. are known as Tollmien-
Schlichting instabilities.

In many important engineering applications, however, transition to turbulence
‘s known to occur at sub-critical Reynolds numbers, and in extreme cases the
Tollmien-Schlichting stage may be entirely bypassed. Responsibility for this by-
pass phenomenon may be linked, for example, to surface roughness or structural
vibrations, but in this report we shall be concerned with free-stream turbulence
as the source. The reason is that the application of primary concern here is to
turbomachinery, where a high level of free-stream turbulence is often produced by
upstream stages.

We also wish to investigate the effect of streamwise pressure gradients on bypass
transition. The adverse pressure gradient case is of most concern because transition
on compressor blades, as well as flow over airplane wings, usually takes place in
a region of adverse pressure gradient. However, transitional flows in the presence
of a favorable pressure gradient are also of interest. This is particularly true in
low-pressure turbines and occurs occasionally in compressors as well.

Experimental studies of the influence of free-stream turbulence on transition re-
veal the presence of longitudinal vortices with a quasi-periodic structure in the
spanwise direction; these are sometimes termed Klebanoff modes. At some point,
what may loosely be termed secondary instabilities are observed, and these cause a
breakdown of the organized structures into turbulence. The secondary instabilities
are usually attributed in the Blasius case to a distortion of the velocity profile such
that it develops inflection points (see, e.g., Wundrow & Goldstein (1998)).

Nonlinearity is an essential feature of bypass transition, and the process is clearly
of such complexity that only a numerical simulation could describe all the stages.
However, DNS simulations are time consuming, and there are many parameters in
the problem that can be varied. Analytical methods are needed to suggest optimal
initial conditions and also to provide insights that can be helpful in interpreting the
results of both experiments and numerical simulations.

An idealization that has proved useful in numerical simulations of bypass tran-
sition is to consider an initial disturbance comprised of a pair of oblique modes
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inclined at equal and opposite angles to the primary flow direction. This has been
done in studies of the Blasius boundary layer by Joslin, Streett & Chang (1993) and
also by Berlin, Lundbladh & Henningson (1994). In both studies, Orr-Sommerfeld
modes were used as initial conditions. However, they were superimposed in the
latter paper in such a way that the vorticity component normal to the wall was
zero and a smaller Reynolds number was used in the simulations. Experiments on
“oblique transition” were reported recently by Elofsson (1998), and comparisons
with the numerical simulations were encouraging.

The objective of the research reported here is to formulate nonlinear analyses to
be employed in conjunction with numerical simulations of boundary layer transition
influenced by free-stream turbulence. Following discussions with Professors Sanjiva
Lele and Paul Durbin, it was decided to represent the perturbations at lowest order
by modes belonging to the continuous spectrum of the Orr-Sommerfeld equation.
Grosch & Salwen (1978) noted that a patch of vorticity in the free stream can be
expanded in terms of these eigenfunctions. Their speed of propagation is close to the
free-stream value, and their amplitude is largest around the edge of the boundary
layer and very small within the boundary layer. These features are exhibited clearly
by the computations of some spatially damped eigenfunctions for a Blasius boundary
layer reported by Jacobs & Durbin (1998). The weakly nonlinear approach involves
a perturbation about a superposition of modes belonging to the continuous spectrum
of the Orr-Sommerfeld equation, so the following section consists of an outline and
preliminary results for that problem.

2. Accomplishments

We wish to investigate the evolution of free-stream disturbances to boundary
layers with velocity profiles belonging to the Falkner-Skan family of similarity solu-
tions. These solutions are obtained for flows in which the free-stream velocity varies
with distance along the surface according to

U:(:z') - Uar xﬂu/('l—ﬂn), (1)

where an asterisk denotes a dimensional variable. The Hartree form of the governing
equation yielding the velocity profile is

"+ "+ Ba(1-f?) =0, (2)

where f'(n) = u/U? and 7 is a similarity variable.

In linear stability calculations, it is usual (but not universal) to use the boundary
layer displacement thickness in non-dimensionalizing the Orr-Sommerfeld equation,
which then takes the form

" _n 1 " "
(a- S) (#" - ald) "6 = o (9"~ 227" +ale), 3)

where the perturbation stream function is given by 3 = #(y)exp{i(az — wt)} and,
for spatially evolving waves, w is real and a is complex. Some care is required in
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employing the velocity profiles obtained from similarity solutions in (8) because the
derivatives in 4" are with respect to y, which is non-dimensionalized with respect
to 6*, whereas 7 is the independent variable in (2). The required relationship is

@'(y) = A2 f"(n), where 8= [ (1= f)n ()

Equation (4) is analogous to (12b) of Obremski, Morkovin & Landahl (1969)
who have presented in some detail the linear stability characteristics of Falkner-
Skan profiles for different values of By. Their non-dimensionalization utilizes 6, the
boundary layer thickness, as the length scale in the Orr-Sommerfeld equation rather
than 6*. This accounts for the different factors in treating the a" term.

What differentiates the continuous spectrum from the normal mode solutions of
(3) is the asymptotic form of the free-stream boundary conditions. Whereas the
Tollmien-Schlichting modes decay exponentially as y — oo, those of the continuous
spectrum are required only to be bounded. OQutside the boundary layer, & = 1; as
a result, (3) has constant coefficients, and four linearly independent solutions are
readily obtained. One grows exponentially with increasing y and must be rejected.
The eigenfunction is then a linear combination of the remaining three, two of which
are oscillatory while the third decays exponentially. In the spatial case, it can be
shown that all modes are damped (i.e., a; > 0), and the details for the boundary
conditions can be found in §2.3 of Grosch & Salwen (1978).

A collocation method has been used to obtain solutions of (3) for values of Sn, the
pressure gradient parameter, ranging from zero to fy = —0.1988, which corresponds
to separation. Only two cases are shown here because of the preliminary nature of
our work. Specifically, the sensitivity of the eigenfunctions to pressure gradient was
found to depend on which feature is plotted. Whereas previous articles have shown
separately the real and imaginary parts of ¢, in this study examining the variation
of |#| turned out to be more informative.

In Fig. 1, the modulus of the spatial eigenfunction for a Blasius boundary layer is
shown. The magnitude is seen to be very small for the roughly 1/3 of the boundary
layer adjacent to the wall. The “penetration depth” is, nonetheless, noticeably
greater than in the cases illustrated in Figs. 3 and 4 of the article by Jacobs &
Durbin (1998). Our result is consistent with their prediction, based on an analysis
of the two-layer Tietjens model, that at lower Reynolds numbers the penetration
depth will be greater.

The computations reported here were done at Res» = 500 to agree with the
experiments of Boiko et al. (1994), whereas those of Jacobs & Durbin were at
a considerably higher Reynolds number. However, our frequency is smaller than
theirs, so further comparisons would be desirable to confirm these trends.

As shown in Fig. 2, when there is a moderate adverse pressure gradient, BH =
—0.12, the penetration depth is slightly less than in the Blasius case. However, near
the edge of the boundary layer the magnitude of the oscillations around the far field
value of |@| is seen to be much greater. This suggests that the details of transition
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FIGURE 1. Modulus of the spatial eigenfunction for a Blasius boundary layer at
Rese = 500, w = 0.18, and a, = 0.1799.

induced by free-stream disturbances might be significantly different for boundary
layers developing in an adverse pressure gradient.

3. Future plans

As discussed near the end of the introductory section, the longer term goal of this
research is to formulate an amplitude expansion involving a perturbation about a
linear state whose eigenfunction is derived from the continuous spectrum. The
streamwise vortices and streaks observed in experiments can be modeled most sim-
ply by starting with a pair of oblique waves. A number of new features would
be present in such a formulation, and certain mathematical difficulties must be
addressed.

To simplify the discussion, let us consider first the simpler problem of formulating
a weakly nonlinear analysis for a single plane wave. We expect the amplitude in
the spatially evolving case to satisfy a Stuart-Landau equation having the form

O e —aidtmA|AT, (5)
where a; is the Landau constant. When the basic disturbance is a Tollmien-
Schlichting wave, the Landau constant is given by the ratio of two definite inte-
grals. These integrals are obtained from imposing an orthogonality condition and
the homogeneous boundary conditions. However, because the eigenfunctions of the
continuous spectrum do not vanish as y — oo, the corresponding integrals do not
exist, and an alternative solvability condition must be employed.



Weakly nonlinear modeling of the early stages of bypass transition 111

2 T T T T Ls T T T T

181

I¢]

08

041

-

FIGURE 2. Spatial eigenfunction for an adverse pressure gradient boundary layer
with 8y = —0.12, Res» = 500, w = 0.18, and a, = 0.1799.

A second difficulty is that in the usual Stuart-Watson theory the perturbation
is about a neutral mode. However, the modes of the continuous spectrum are
weakly damped. The consequences of this may be minor, perhaps a slower rate
of convergence of the amplitude expansion. A possible solution may be to include
nonlinearity at the lowest order to obtain a neutral mode. In any case, the matter
is one that must be considered.

Returning now to the pair of oblique modes as an initial perturbation, some
aspects of the development can be anticipated from the paper by Benney (1961)
which provides the most detailed description of the analysis leading to the Benney-
Lin vortices. A plane wave in addition to a pair of oblique waves is considered
in Benney (1961); however, setting the parameter 4 = 0 in §3 of his paper yields
equations analogous to those anticipated in our analysis. Of particular significance
is a sort of resonance that occurs between the waves and the mean flow at the first
order beyond the linear problem. In the nearly-neutral case, this resonance was
shown to produce a secondary flow whose u-component velocity grows like 2 while
the mean longitudinal vorticity has a growth proportional to t.

In the formulation under consideration here, the perturbation at lowest order is
of the form

uV = {A(X)i(y) e ez=wt 4 ¢.c.} cos Bz

oD = {A(X)6(y) eilaz—wt) 4 c.c.} cos fz (6)
w® = {A(X)b(y) =Y + c.c.} sin Bz

o = {A(X) py) 4o + e.c.} cos iz,
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where a is now real and X is a slow variable in the streamwise direction. The
quantity 9(y) satisfies the Orr-Sommerfeld equation (3) with o2 replaced everywhere
by a? + % . Once © has been determined, the continuity and vertical vorticity
equations can be used to obtain the other velocity components, and the pressure
perturbation is obtained from the z—component momentum equation.

It can be expected based on the considerations discussed above that at the next
order a large mean flow response will occur. The amplitude equations will not arise
until the following order in the amplitude expansion. One result that is hoped to be
obtained after deriving and solving these equations is the obliqueness angle leading
to the largest amplification rate. Because we are dealing with the sub-critical case
here, an estimate of the amplitude of turbulence in the free stream required to
promote instability will also come out of the analysis.
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Interactions between freestream
turbulence and boundary layers

By J. C. R. Hunt!, P. A. Durbin AND X. Wu?

1. Motivation and objectives

The interaction between free-stream turbulence and boundary layers is one ex-
ample out of many that involve different types of fluid motion in overlapping or
adjacent regions of flow. We are concerned here with flows at high Reynolds and
Peclet numbers, so that the effects on the interactions between these flows of molec-
ular diffusion are small except close to the boundary [B] between them. In these
complex configurations the overall flow is not generally dominated by a single mech-
anism; for example, perturbations do not grow everywhere at the same rate (Hunt
& Carruthers, 1990), but in zones of limited extent with characteristic flow pattern
such as thin shear layers, and on certain ranges of time and/or length scales, the
flow can be dominated by specific mechanisms. These tend to be defined by only a
few parameters. Interactions between the flow regions, say [F'1] and [F2], are often
dominated by such mechanisms in layers lying along the interface [B]. Some effects
propagate into the interior of the regions by advection or wave motion (Fig. 1),
while others act upon the boundary.

A large class of such flow problems that are of fundamental and practical interest
are characterized by interactions between two distinct and weakly correlated tur-
bulent velocity fields in adjacent regions. The turbulence in each region may have
been generated by different kinds of instability, or they may simply differ in their
statistics such as their integral length scales. Such interactions occur continually
and randomly within turbulent flows and ionized fluids, for example, where small
eddies impinge on large coherent structures or where the outer and inner parts of
a turbulent boundary layer meet (Terry, Newman & Mattor 1992). In engineering
these problems occur in the design of turbomachines. There, the flow approaching
the rotating airfoil blade or centrifugal impeller contains turbulent eddies that are
much larger than the small scale turbulence in the boundary layers on the solid
moving parts. In order to determine the effects of this external turbulence on heat
transfer or on the pressure distribution, it is necessary to understand how the intense
small scale turbulence grows in the boundary layers that are initially laminar. This
can occur at lower values of the Reynolds number than without external turbulence
— the mechanism of ‘bypass’ transition. Is it caused by the external turbulence be-
ing simply advected into the growing boundary layers (an advected interaction Al),
or, alternatively, does the external turbulence directly induce pressure and velocity

1 Permanent address: Cambridge University, DAMTP, Silver Street, Cambridge, UK
2 Center for Integrated Turbulence Simulation, Stanford University
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FIGURE 1. Schematic diagram of interactions between external region [F1], con-
taining disturbances, and vortical region [F2], that may be turbulent. Regions

separated by interface [B] of finite thickness whose mean position is indicated by a
dashed line.

fluctuations in the shear profile of the boundary layer, which may be unstable? This
external interaction (EI) mechanism may be very weak because of the tendency of
a shear profile to be sheltered from external fluctuations. Experiments and nu-
merical simulations for weak and moderate levels of freestream turbulence (e.g.
Goldstein & Windrow 1998, Liu & Rodi 1991) cannot really discriminate between
these competing mechanisms without a better theoretical framework, to which we
are contributing in this study. Recent measurements by Thole & Bogard (1996)
show quite different interactions when the external turbulence is strong relative to
the turbulence in the boundary layer.

Similar problems arise on a range of larger scales in meteorology (e.g. Collier
et al. 1994). For these types of complex flow, practical models are needed; one
approach is to make simplifying assumptions about the nature of the interactions
and broadly classify them as: (i) superposition (S) of flows in overlapping regions so
that interactions can be ignored, (ii) exclusion of flows, or flow processes, in certain
regions because a particular mechanism is dominant, especially near the boundary
[B]; or (iii) significant interactions (Al and EI) between the flows in the adjoining
regions, in which new phenomena or mechanisms may arise.

Theoretical analysis of the appropriate vorticity dynamics and some new direct
numerical simulations is the method we use to study these interactions. The the-
oretical approach is different from but complementary to that based on the hy-
drodynamic stability theory for small disturbances (Jacobs & Durbin 1998). Both
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approaches demonstrate how a shear layer can block certain kinds of external distur-
bances so that the flow inside the layer is ‘sheltered’ from them. If the boundaries
of the shear layer are highly contorted, then the interactions are different, and it is
possible for the weak mean vorticity of the outer part of the shear layer to be dis-

torted and dispersed into the freestream — the process of ‘vortex stripping’ (Legras
& Dritschel, 1993).

2. Analysis of external perturbations to boundary layers

2.1 Long length scale, low amplitude perturbations, and shear sheltering

Our object here is to analyze the external interactions (EI) between perturbations
ul*l(x,t) in the freestream, where the streamwise mean velocity is & = U and the
mean velocity profile U(y) in the adjacent boundary layer over a rigid surface at
y = 0. We are not considering the advected interactions (Al) of the perturbations
as they enter the growing layer; in fact, we assume here that the layer has constant
thickness h. Thus N

U(y) = UsoU(Y), where gy =y/h

and N N
U—-lasy—oo, U=0at y=0. (2.1)

We consider a relatively weak 2-dimensional fluctuation with magnitude up << Uc,
with a length scale L, and that moves with a velocity c in the freestream. In
order to obtain analytic solutions and demonstrate the key processes, we assume
that L >> h; this approximation is relevant to many experiments and practical
configurations (see Fig. 2). Because of their long length scale, any of these external
perturbations interacting with a turbulent boundary layer effectively interact only
with the smoothly varying mean profile. So any initial boundary layer fluctuations
are ignored here but not in §2.2.

Thus in the freestream, as y/L — oo, the total velocity field u* is given by
u* = u + 1, where the perturbation field is expressed in moving coordinates as
u = ul™l = uyf(Z,7), where

(z —ct)
L

T =

L=, and f = (f2, £, 0). (22)

Either the maximum value f; ~ 1, or if it is random its rms value f; = 1, so that
uo indicates the magnitude of the freestream disturbance. We assume that

Uy << Veo. (2.3)

We now consider how u changes above and within the layer as it is advected down-
wind. Previous studies by Grosch & Salwen (1978) and Jacobs & Durbin (1998) have
considered small disturbances, where f is periodic in z and y, that travel at the same
speed as the mean flow, i.e. ¢ = Uso. They showed that as Re(= hUs/v) — o0,
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FIGURE 2. External interactions between a boundary layer flow in [F2] and

small amplitude disturbances traveling with the freestream speed Uy in [F1]; (a)
schematic diagram with scales showing the flow zones {i/} in [F1] and {M}, {S}
in [F2]; (b) the perturbation streamlines in a moving wake traveling outside the
boundary layer (after Hodson 1985) and profiles in the streamwise direction of the
perturbation velocity 4 and pressure p at the top of the middle {M} zone.

external disturbances are damped within the boundary layer. If only linear distur-
bances are considered, they are exponentially small, below & penetration distance &

of order
h(hRe/L)™/3

so that as h/L decreases, §/h increases. In the rest of this study we assume Re is
very large, and we ignore such viscous effects except where they are very large in
a thin zone, denoted as S, at the surface. These results demonstrate the principle
of shear sheltering for linear disturbances when ¢ = Uy,. What happens if these
constraints are relaxed? The experimental and numerical evidence is that some
penetration can occur.

Consider the problem of a mathematically ‘compact’ moving disturbance such
that |f| — 0 as |Z] — oo. This could be the wake of a body moving across the stream
ahead of the plate (Hodson 1985, Liu & Rodi 1991); in that case f;, fy < 0. Since
fy # 0 on y = 0, the external disturbances impact on the boundary layer and the
plate. This creates a perturbation velocity Au, which is analyzed in different zones
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corresponding to different mechanisms, namely: upper {{}, where y > h; middle
{M}, where h < y < h,; and surface {S} with depth h,, where h, > y > 0. Asin
other rapid distortion problems, the changes to the initial or freestream disturbances
are linear over a travel time T = z/U,, less than Ty, provided that T is much less
than the time scale of the disturbance T, ~ L/uo. In the zone {{{} above the
boundary layer where the only vorticity is that of the disturbance, this vorticity
field is simply advected by the mean flow and is not distorted by the changes to
the perturbation velocity near the plate (Hunt & Graham 1978). This implies
that the perturbation velocity field is the sum of the initial freestream field and an
irrotational field, i.e.,

u = ul™ + Au, where u = (u,v), and (Au, Av) = V¢. (2.4a)

To satisfy continuity
Vi =0. (2.4b)

Since the scale of the freestream perturbation ul®! is large compared to the bound-
ary layer depth h, the boundary condition on Au near the plate is that

asy/L—0, Av= g—z = —ugfy- (2.4¢)

In the free stream as y/L — oo, Au = |[V¢| — 0. This linear calculation implies
that Au and ¢ are also functions of 7 and § and are not varying in time as they
move downstream.

Note that further downstream where T > T, the impingement of the free stream
perturbations onto the plate leads to significant distortion of their vorticity, typically
rolling up into vortex tubes near the surface (Hodson 1985, Perot & Moin 1995)

In the middle layer {M}, the equation for the vertical velocity perturbation v is
essentially the long wave Rayleigh equation for small perturbations to a shear flow
(Drazin & Reid 1980). It can be expressed in coordinates moving at the speed of
the disturbance c as

v (U
'5? -V (EE[NT/(U — C)) = 0, (25)
where 3(%,7) = v(z,v,t), and, for consistency, #(%,9) = u(z,y,t) = — [ —%dm. To

solve (2.5) it is convenient to write U = U(Y) — ¢, noting that § = yh/L and that
d*U/dy? = d*U/dg? ~ U L2/R%. If ¢ = Uso, then U =~ 0 at the top of the layer,
and U ~ —c at the plate (§ = 0).

The solution for (%,7) can be expressed as a separated variable (Lighthill-Stewart-
son) solution so that

4(z,79) = A(E)%Z; + 5(%)—2@, (2.6)

where

~

2@) = [(dﬁ/dm /A T2 GHdgt + T (5)| U

n
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and A(Z), B(7) and ¥ are determined by satisfying the velocity and pressure con-
ditions. In order that v = 0 on y = 0, and since U(0) # 0, it follows that, A(Z) =0,

To leading order pl*! does not vary with y in {M} and is, therefore, equal to its
value pll(z) at the bottom of the upper layer {U} above the boundary layer. Thus

B(z) = —pM(z) = —pl¥l(2,5 — 0) (2.10)

Note that v and p at these two levels at the bottom of {{} and the top of part of
{M} match each other.
9~ (h/LY?ul/Us. (2.11)

Thus in {M}, © becomes very much less than uo. Therefore the blocking bound-
ary condition for v in the upper zone {U} is applicable at the level y ~ h. For
y < he, the streamwise velocity is given in terms of pl*) by

u = pM(2)2(9)/Ueo (2.12)
Thus in {M} @ ~ (u}/Us) and is much less than in {{}. But & >> 9 if h/L << 1.

At the top of { M}, non-linear or viscous processes determine the smooth transition
between these layers. An approximate form for u that is finite and continuous across
the critical layer at y ~ h and is asymptotically correct when L >> y > h and when
y << his

—pM(2)
Uso/Z(Y) + A(T)

u

where A\ = —pM /(w(2,5 — 0)) in {U}.  (2.13)

—

z,y) =

To illustrate these effects of the blocking of the external normal velocity v[*° by
the vorticity in the boundary layer, when ¢ = U, and the sheltering of the flow
within the layer, we consider an example of a small but finite amplitude freestream
perturbation that moves with the freestream and is of such a form that the pressure
perturbation far above the plate is exactly zero. We take the practical example of
a weak jet or wake such that u = —(cos a,sina)uof where f = 1/(1 + 72). This
corresponds to a traveling wake impacting on the boundary layer (Hodson 1985) if
/2 > a > 0 or an atmospheric downburst if 7 > « > 7/2.

Then for T < Ty, at the bottom of the zone {{/} just above the boundary layer
the solution to (2.4) shows that Au(Z,y = 0) = Ay (T)uo, where

Ay = Tsina/(1 + 72), (2.14)

so that for the wake the streamwise velocity perturbation just above the boundary
layer consists of the negative freestream perturbation and a forward jet on the
leading side of the perturbation and a negative one on the trailing edge. See Fig. 2b.

The results (2.10) and (2.12) show that to first order the velocity fluctuations in
the boundary layer (y < h) are zero, but to second order are finite and depend on
the pressure perturbation p, in {{{}, where

PM = —(1/2)(uoo + Au(y/L — 0))2. (2.15a)
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In this example
1 ~ . ~
pPM(z) = —Eug [(—cosa +Zsina)/(1 + wz)]2 . (2.15b)

Note that the form of u(z) in {M}, derived from (2.12) differs from that in {U/},
being negative and having two minima. In the surface zone {S}, viscous effects
induce velocity profiles with inflexion points and may trigger instability there.

These results change as the travel time T' increases so as to become comparable
with Ty, when the vorticity of the impacting disturbance is significantly distorted.
In addition, if the boundary layer is laminar, instabilities tend to be stimulated and
modulated by the traveling disturbance above the layer, as recent direct numerical
simulations demonstrate (Wu et al. 1998). The experimental flow studied by Liu &
Rodi (1991) corresponds to that of our example, and the results in the early stages
of the interaction are very similar to these theoretical results. Both the DNS and
experiments demonstrate the sharp difference between the form and magnitude of
the fluctuations in the zones {{/} and {M}, and both show that the instabilities
are initiated very near the surface.

If the disturbances travel at speeds c significantly different from the freestream
speed, as occurs in atmospheric downbursts, shear sheltering does not occur. Indeed
the surface may be quite large, and their form may be strikingly different from those
generated in normal conditions (Collier et al. 1994).

In terms of the concepts of interacting flows proposed in the introduction, these
flows demonstrate the phenomena of exclusion (X) in some circumstances and es-
sentially superposition (S) in others, depending largely on the parameter ¢/U and
to a lesser extent on the amplitude uo/U.

2.2 Finite amplitude perturbations and vortez stripping

In our previous analysis it was assumed that across the bounding interface [B]
between the external region {F1] and the vortical region [F2], the vorticity &2 in the
latter decreases abruptly to a much lower level in [F1]. However, in many vortical
regions there is a gradual decrease in the magnitude of &1 from characteristic
value we in the core to a significantly lower value wp near the interface [B] where
it is comparable with or smaller than the strain rate in the external region [F1].
Following Legras & Dritschel (1993), we review here the mechanisms for how in
these flows external perturbations in [F'1] cause large distortions and displacements
of the interface [B] over distances of order k, the length scale of [F2]. These are
associated with changes to the vorticity field in [F2] that are overwhelming in the
outer part and small though significant in the core. Such interactions, involving a
different type of inhomogeneity in [F2], plays a critical role in the formation and
persistence of large scale vortical motions in the atmosphere and oceans and in the
structure of shear flows with high levels of external turbulence.

We consider the interaction between a compact vortical region and a coplanar
straining motion U(z) in the external region [F1], having a length scale L that is
large compared with h and a characteristic strain rate Us/L, see Fig. 3. We make
the following assumptions for simplicity: in the core part of [F'2}, whose length scale
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(t)

-

FIGURE 3. Schematic diagram of the mechanism for how external straining motion
in [F1] remove, by ‘vortex stripping’, the low vorticity flow in the outer part [F'2,] of
the vortical region, while the inner core [F2c] is only slightly distorted; (a) showing
the vortex sheet surrounding [F2] when the straining motion is initiated and the
convergence points X. where viscous diffusion leads to detrainment of vorticity.

is he(<< h) and is denoted by [F2¢], the initial vorticity is assumed to be much
greater than the external strain rate so that we >> Uy /L, and in the larger outer
part of the region, [F2p], the initial vorticity is much smaller and is of order wp
where wp < Uy /L.

The evolution of this flow can be analyzed by inviscid vortex dynamics following
G. L. Taylor (See Batchelor 1970) and the theoretical and experimental methods of
Rottman et al. (1987).

Imagine that the boundary [B] is rigid up to the time ¢ = 0 (which means that the
external flow passes round the vortex) and is then dissolved (or consider the flow
to be generated by a rapidly growing instability); then a vortex sheet is generated
around [B]. This vorticity distribution induces the fluid in the interface to follow
the direction of the streamlines of the flow in [F1] but does not travel at the same
speed. (This is analogous to how, when a cylinder of fluid is suddenly introduced
into a cross flow, it distorts itself into a vortex pair and moves downstream at about
half the speed of the flow).

The form of [B] as it moves depends on the relative strengths in the outer part
of [F2] of the strain rates induced by the external flow and by the core vorticity,
indicated by the parameter

Zg = (Uo/L)/(wch/hc) ~ (Us/L)/wB.
If g > 1, much of the fluid and the vorticity in [F2y] is swept away in two vortices,

leaving a trail behind them back to the core vortex. But if £p < 1, the fluid and
outer vorticity are carried round the core vortex in the form of an elliptical ring.
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There is a sharp transition between these two outcomes as £p increases as a result
of the formation of singular (zero velocity) position on [B].

Note that, although the core vortex is strong enough that it is only slightly
deformed, it is rotated by a finite angle until it reaches a position of equilibrium
where it induces a velocity field that is opposite to that of the strain field.

This simple example demonstrates how weaker vorticity can be ‘stripped’ from
the outer region of a vortical region by an external straining flow. Legras & Dritschel
(1993) have quantified this process for different types of rotational and irrotational
straining motion, and shapes, and orientations of the vortical regions. They find
results that are consistent with observations of the changing shape of the the polar
vortex and its accompanying ‘ozone hole’.

The effect of finite amplitude external perturbations ‘stripping’ away the weak
vorticity at the outer edge of shear layers has been demonstrated in two earlier
laboratory studies. Hancock & Bradshaw (1990) measured the interactions between
large scale freestream turbulence with rms velocity u, and length scale L, and the
outer, low vorticity (~ wp) part (or ‘wake’) of a turbulent boundary layer whose
depth is h. Their results show that when uo/L; > wp ~ u,/h (or up > u, the
friction velocity or rms turbulence in the boundary layer), the mean vorticity w,
in the outer part is stripped away and the thickness and structure of the boundary
layer is reduced to that of the higher shear logarithmic region. For lower values
of the external turbulence, there was no structural change. Rottman et al. (1987)
obtained similar results when they measured how the the outer shear region of a
gravity current was stripped away by external turbulence when uo/L, > wp.

This model problem also shows how when vorticity is ‘shed’ from the boundary
of a vortical region, it tends to develop into coherent patches of vorticity even in
flows where the two regions are not coplanar as in jets in cross flow Coelho & Hunt
1989). These may have significant dynamical back effects on the region [F2] it ‘left
behind’ and may transport matter and heat away from [F2].

In real rather than model complex flows, the vortical regions have finite gradients
of vorticity, evolve on finite time scales, and, at their interface with the external
flow, viscous diffusion of vorticity is part of the process of detrainment or shedding
of vorticity. We have considered the first two of these idealizations; what about the
third?

Vorticity tends to diffuse from a fluid interface around ‘convergence’ points, de-
noted by X, in Fig. 3a, where the flow parallel to the surface converges and stream-
lines move into the exterior region [F1] from near the surface. Once a vortical region
[F2] has developed into a steady form, if it is located in a unidirectional external
flow U, the vorticity that diffuses from X. can be advected away from [B]. Because
of the converging flow, this detrained vorticity tends to be confined to ‘wakes’ whose
width is small compared with k, as is observed below rising vortex rings (Turner
1963). Therefore, in such a flow over most of the exterior side of the interface [B],
there is little shed vorticity so that the large scale interactions and the dynamics
determining the response of [F2] to external perturbations is essentially inviscid,
as we have assumed. In support of this hypothesis, one notes that in the above
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example of a deformed vortical region, the detrainment of vorticity by unsteady
vortex induced motions is very similar to that produced in a slowly changing flow
with viscous diffusion, as is also found in many other flows (e.g. Dritschel 1990).

3. DNS study

A direct simulation of transition induced by turbulent wakes incident on a laminar
boundary layer has been performed as part of the ASCI/CITS program at Stanford.
The ideas discussed in the previous section have been applied to that study. Details
can be found in Wu et al. (1998).

4. Implications and future work

The analysis in §2 of external fluctuations, with long streamwise length scale,
traveling with the flow has shown how they are distorted by the mean shear of the
boundary layer so as to be blocked above the layer and to be diminished within
the layer. This interaction is not covered by the receptivity theory of Goldstein &
Wundrow (1998), which is relevant to the disturbances advected into the layer and
inducing long wave Klebanoff mode instabilities there. The transition phenomena
simulated here do not have a ready theoretical explanation — this requires a more
detailed look at the simulated flow fields (for example, the form and the effective
Reynolds number of the inflected profile induced below the traveling disturbance)
and perhaps more simulations with different initial conditions. Nevertheless, it be-
came clear that the even the reduced level of velocity perturbations induced by
the external unsteady wakes was sufficient to trigger transition, depending on the
amplitude of the free stream fluctuations caused by the wake eddies. For low ampli-
tudes the types of instability induced by infinitesimal disturbances were simulated;
but as their amplitude became large enough, the instabilities could grow to the
non-linear stage within the time of passing of the finite length external disturbance
— a quantitative estimate of this threshold is desirable. Once this threshold was
reached, the transition process did not change when the frequency of the external
disturbances (i.e., its average level but not its peak) was increased. This suggests a
saturation level was reached that is consistent with non-linear, dynamical systems
concepts (Reddy et al. 1998).

To discuss the continuing effect in our simulations of the external disturbances
once the boundary layer had become fully turbulent, it is helpful to relate them
to previous studies of the interactions between external turbulence and turbulent
boundary layers. These can be categorized into three groups. When ‘weak’ external
turbulent eddies have a scale L that is of the order of the thickness h of the boundary
layer and are less energetic than those of the boundary layer (i.e., u, < u.), they
are swept round by the swirling movements of the large eddies at the edge of the
boundary layer and entrained; their energy adds slightly to that of the turbulence
in the boundary layer. But if their scale is large, they are essentially blocked by the
mean shear.

When the eddies are of moderate strength (i.e., u, > ux), where L ~ h, the vortex
stripping process can operate, and, although this disperses the vorticity upwards,
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this effectively means that the outer vorticity is negligible, and the thickness of the
boundary layer is reduced to a new level h/t where the mean shear is comparable
to the external strain i.e., du/dy ~ u,/L. This implies that the structure of the
layer is changed to one where there is no outer ‘wake’ element, and only a ‘log’ law
profile extends to the outer edge of the layer. As explained in §2.2, this is consistent
with previous turbulence experiments. The simulations show that as the average
vale of u, is raised by increasing the frequency of the wake passing, the same trend
in the profile is observed. This explanation needs to be tested in studies of the eddy
structure in the outer region, for example, using interface sampling methods.

When the external eddies are much stronger than those of the undisturbed layer,
(ie. Usx << Uy ~ Us), then its structure becomes more like that of a shear free
turbulent boundary layer with the downdrafts and updrafts of the external eddies
dominating the structure of the turbulence near the plate, including the surface
shear. Thole & Bogard (1995) suggest that theoretical models and simulations
(Perot & Moin 1995) for this limiting case are appropriate approximations when
Uo/Uoso ~ 0.25.

The next challenge is to investigate which of these results can be modeled with
Reynolds averaged statistical equations. Some of the first attempts were reviewed
by Pironneau et al. (1992).
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Interfaces at the outer boundaries
of turbulent motions

By D. K. Bisset, J. C. R. Hunt', X. Cai AND M. M. Rogers

1. Motivation and objectives

Most fully developed turbulent flows are inhomogeneous as a result of being
blocked by rigid surfaces or by being in contact with regions of very low turbulence
or even no motion at all. Inhomogeneity is a pronounced feature of all the canonical
shear flows of engineering interest, e.g. wakes, jets, shear layers, and boundary
layers. It is observed that the properties of the turbulent motions vary very rapidly
at a bounding surface, either approaching a wall or across a highly contorted, moving
interface separating the turbulent from the non-turbulent motions.

In relation to the eddy dynamics and statistical properties of the turbulence, the
interface

1. delineates the largest scales of the turbulent velocity field L;

2. defines the rate of growth of the turbulent velocity field via the mean velocity of
the bounding interface normal to itself (Ep);

3. defines, by its convoluted shape, the statistics of intermittency;

4. contains regions of intense local diffusion of vorticity, and of heat and matter;
and

5. embodies a vorticity discontinuity where the normal component has to turn itself
into a direction parallel to the interface since vortex lines cannot end within the

fluid.

The interface is contorted over a range of length scales at least as great as that
of the turbulent velocity field, which implies that the local diffusion is very intense
(point 4 above); but this does not necessarily imply that the interface becomes
diffuse because the eddy motions continuously rebuild the diffusion front. The
usual presence of mean velocity E normal to the interface also plays a part. Even
when there is no ambient flow, the turbulence generates such mean flows itself
through the gradients of the Reynolds stresses provided that it is developing or
is non-symmetrical. This motion E induced by the turbulence is also termed an
entrainment velocity, but its magnitude and direction are invariably different from
those of Ey (Turner 1986).

Components of velocity parallel to the interface might be increased by a vorticity
discontinuity (point 5 above), but on the other hand they might decrease because
they have no contribution from induction by the vortex lines that would have been

1 Permanent address: Cambridge University, DAMTP, Silver Street, Cambridge, UK
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there in the absence of the interface (Carruthers & Hunt 1986). The fact that the
vorticity is parallel while there is some component of fluctuating velocity normal to
the interface suggests that the local helicity (h = & - @) is small; in fact, normalized
h may become smaller as E; becomes greater (Hunt & Hussain 1991).

Knowing more about the kinematic features of these interfaces will be useful for
examining the implications of concepts and models that make simplifying assump-
tions about their large- and small-scale shape [which range from being flat (Phillips
1955) to fractal (Sreenivasan & Meneveau 1986)] and about their intermittency
(Townsend 1976). The dynamics will be better understood when the rapid changes
in the vorticity and velocity components are measured and studied in local frames
to see if they are locally determined or whether they are essentially determined by
the largest scales of the flow (Gartshore 1966). Additionally, the movement of fluid
particles relative to the interface is the essential quantity to simulate, measure, and
analyze in order to calculate how the interface affects the mixing of scalar quanti-
ties and thence how it controls chemical reactions and combustion. The turbulent
interface considered here is not the viscous superlayer (Corrsin & Kistler 1955) that
has a thickness of the order of the Kolmogorov lengthscale, though the superlayer
could fall within it.

Some of the specific questions we are examining are the following,.

1. What determines the interface propagation velocity E3? In other words, for an
unbounded turbulent shear low, how does non-turbulent fluid become turbulent?
We know that, in the limit, it happens through molecular diffusion across local
regions of large velocity gradient and that such regions occur because of:
¢ engulfment of irrotational fluid, which is then mixed deep within the flow, and
¢ straining (stretching) motions in the vicinity of the turbulent/non-turbulent

interface.
e Are there other possibilities?
Consider also detrainment, where isolated regions of rotational fluid detach and
drift outwards. (See also the studies of Hunt, Durbin & Wu in this volume.)

2. What are the essential features of the interface (whether defined in terms of
velocity, vorticity, and combinations such as helicity or scalar quantities and/or
their derivatives) and are they distinct enough to define the interface?

3. (a) How can such an interface be defined unambiguously, especially since it may
be multiply connected? (b) How can its 3D position and orientation (outward
normal) be determined as f(z,y, 2,t) in the DNS data? [The answer depends on
how distinct it is.]

4. What are the values of various properties in the vicinity of the interface (vector
and scalar variances, correlations, ...)?
o Are there systematic variations, e.g. differences between the outer face and
inner face of a protrusion?
e Are there any interesting changes in properties over time or changes in the
interface shape (e.g. during engulfment)?
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5. What are the characteristics of irrotational fluid that has moved away from its
free-stream state? [Such fluid may contribute to mass flux, for example.]

6. Is there a dependence on Reynolds number, spreading rate, flow type, the nature
of the DNS simulation, or other parameters (for example forcing, which clearly
increases intermittency and the depth of the convolutions) for any of the above?

2. Accomplishments

The project is still in its early stages, and only a few of the above questions have
been addressed so far. All of the work mentioned here utilizes the simulations of a
temporally growing, self-preserving turbulent far-wake reported by Moser, Rogers
& Ewing (1998). The data set stored at 7 = 43 was used for scalar detection work,
and the data from 7 = 91 were used for vorticity-based detection.

2.1 Interface detection through scalar level

A preliminary investigation of interface properties was carried out by X. Cai
using the level of a passive scalar as the interface detection criterion. Under some
conditions the scalar can mark vortical regions quite accurately, and unlike vorticity,
the scalar has exact, constant bounds to its range of values. Two main advantages
result from this. First, detection threshold levels are likely to remain constant over
time, and second, the level of numerical noise relative to thresholds can be assessed
through examination of out-of-range values of the scalar. However, the way in which
the scalar was initialized within the present DNS was aimed at a study of the transfer
of fluid from one side of the wake to the other, and therefore the correspondence
between scalar-marked regions and vortical regions is not always close, even at later
times. The scalar was initialized with value 0.0 in the free-stream below the starting
field of the turbulent wake and at 1.0 above it, with a smooth gradation of values
within the turbulence. Nevertheless, these initial results suggest that the interface
is very sharp, but that results may depend on the details of the detection procedure
and threshold values used. A summary of this work is attached as an appendix.

2.2 Interface detection through vorticity

For current work we are using w, the magnitude of the vorticity vector, for detec-
tion of the turbulent/non-turbulent interface, which should be more reliable than
the passive scalar for the present DNS data. At very low levels, however, w is
affected by numerical noise. The magnitude of the noise problem depends on the
intrinsic sharpness of the interface; if the interface is sharp, its detection should be
relatively independent of the level of w over some range, and a level slightly above
any background noise can be used. Noise particularly affects the calculation of the
direction of the normal to the interface.

Conditional averaging outside and inside the interface should be carried out along
a line normal to the interface, which involves careful interpolation of data. Stored
data in spectral form were projected onto a relatively fine, uniform physical grid
of 385 x 400 x 97 points so that linear interpolation between gridpoints would be
accurate. For simplicity, the present results are confined to a subset of the data for
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which the surface normal is within 25° of the y-axis (normal to the wake center-
plane), and conditional averaging is carried out in the y-direction only (with linear
interpolation). Both sides of the wake are used, with sign reversal as appropri-
ate. Only the outermost crossing of the vorticity threshold for any (z,z) position
1s considered in each case. Further interface positions resulting from irrotational
fluid intruding below the detected vortical fluid (which certainly happens here and
there) are ignored.

The lowest level of the detection threshold C,, that seemed to give reliable inter-
face detections was 0.7Uq /b (Uy is the centerline velocity defect and b the wake width
across the half-mean-velocity points); this level is used below unless stated other-
wise. The interface indeed appears to be quite sharp in that substantial increases
in C,, had only small effects on detected positions, and conditional averages show
little vorticity outside the interface. After application of the 25° angle criterion,
about 26% of the surface area projected onto the centerplane was accepted.

The direction of the normal may in itself be significant for the properties of the
interface, as may be its position on a protrusion or at the depths of an irrotational
intrusion, and therefore other criteria may be used in conjunction with w level.
In particular, the main set of interface positions was split into three equal-size
subsets according to whether the interface was roughly its average distance from
the centerplane, or significantly closer, or further away (the last two being the ‘inner’
and ‘outer’ subsets for the following results).

The effects of threshold level and the inner/outer split on (w) are shown in Fig la.
Angle brackets indicate conditional averaging relative to the detected interface at Vi
while an overbar indicates a conventional average. For the main set of detections,
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the distribution of (w) (not shown) is very similar to the inner and outer curves.
Increasing C,, by a factor of ten results in the appearance of a thin layer of very
high (w), but there is a significant ‘leakage’ of vorticity into the irrotational region
(Fig 1a). Also there is a reduction in the number of accepted points from 26%
to 17% of the projected surface area here, leaving only the strongest regions for
averaging. It turns out that there is very little difference for (w) between the inner
and outer subsets (other quantities behave differently, as will be demonstrated).

The turbulent zone of the wake has almost uniform vorticity (Fig 1a), and the gra-
dient at the interface is quite sharp. This gradient is not an artifact of the detection
process: the tiny rectangle near y = y; shows a typical separation between adjacent
data levels/gridpoints that confine the detected interface, and the threshold-based
detection merely requires that the (w) curve should pass down through that rect-
angle.

Corresponding to the region of high gradient in (w), there is a large gradient of
the scalar (T) (Fig 1b) that is almost identical for the inner and outer subsets.
In terms of conditional averages, agreement between the interface and the edge of
the scalar-marked zones seems remarkably good given the reservations expressed
earlier, but it could be worse for surfaces not roughly parallel to the centerplane.
Within turbulent zones there is a divergence between the inner and outer subsets,
presumably related to the greater distance from the source of ‘cold’ scalar in this
case, but it is not clear why there should then be such similarity within the interface.

Reynolds stresses relative to the interface and a breakdown of the components of
w are shown in Fig. 2 (all subsets combined). As expected, Reynolds stress levels
for the interior of the wake are much the same as for the conventionally averaged
case (Moser, Rogers & Ewing 1998) with some flattening of the peaks in w? and
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uv. The levels of fluctuations induced in the irrotational zone are not negligible and
decrease only slowly outside the interface — these are potential fluctuations, not
‘leakage’. Gradients within turbulent zones near the interface (i.e. the slopes of the
curves shown) are not as steep as for (w), which is presumably because of the greater
contribution from large-scale structures to Reynolds stresses than to vorticity. It is
conceivable that large increases in Reynolds number would steepen these gradients
and eventually cause local maxima in (u?) and (w?), as suggested by Carruthers
& Hunt (1986). The moderate-sized peak in (u?) presently existing just inside the
interface, which continues into the irrotational zone, is a result of the conventional
(i.e. Reynolds averaging) definition of u? as (U — U(y))?, to be discussed shortly.
Results for the inner and outer subsets taken separately (not shown) differ a little
quantitatively but not qualitatively.

By symmetry (w.) and (wy) should be zero for surfaces parallel to the centerplane,
so their magnitudes (Jw;|) and (Jw,|) are presented along with —(€,) and (|Q.]) in
Fig. 2b (2, includes the non-zero mean spanwise vorticity). As noted earlier, the
normal component wy is expected to decrease first as the interface is approached,
which is verified by the results, while the parallel components exhibit sharper cutoffs.
The peak in —((2;) is a result of the direct contribution from mean shear dU /dy
for surfaces in the present orientation, and it appears that almost all w, has the
same sign close to the interface. Spanwise vorticity (Q2,) changes sign across the
midplane while its magnitude (|€2,|) is nearly constant and similar to the other two
magnitudes. Results for surfaces in other orientations may turn out differently.

The conventional mean velocity U(y) is compared to (U) in Fig. 3a, with the
latter curve offset along the z-axis by the average height of interface detections.
The gradient in (U) is quite sharp, and it is clear that the gentle rolloff in U is
a result of a statistical distribution of superimposed instantaneously sharp dU/dy
events. The larger difference between the two curves in the vicinity of the interface
is the explanation for the extra peak in (u?) seen in Fig. 2a, given the conventional
definition of fluctuation u.

Conditional mean velocities for the inner and outer subsets show considerable
differences (Fig. 3b). Both groups show a large gradient and sharp cutoff in (U),
but just outside the interface the level of (U) is quite different: it is well below
its free-stream value for the inner subset and significantly above free-stream for the
outer subset. Presumably these are potential-flow effects caused by large protrusions
of turbulent fluid either blocking or ‘squeezing’ the free-stream flow. Transverse
velocity (V) for the outer group is dominated by a strong outwards flow ({(V') reaches
more than 12% of Up) in the region inside the interface, suggesting quite active
growth of the outer regions of the interface. The dominant feature for the inner
group is an inwards flow in the region outside the interface; it is tempting to call this
an entrainment flow although we don’t know how the interface is moving relative
to the fluid at this stage.

2.9 Tentative conclusions

The picture emerging so far, largely in agreement with the concepts of Townsend
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(1976) and others, is that the far-wake consists of relatively uniform zones of well-
developed turbulence bounded by a convoluted, rather sharp interface. Gradients of
velocities, vorticity, and passive scalar are very steep through the interface until they
suddenly flatten out at the free-stream. Both velocity fluctuations and systematic
deviations in mean velocities (U) and (V) are quite significant within the irrotational
regions near the interface. It will be very important to investigate and describe
quantitatively the shape and movement of the interface, which is likely to be a
function of the large-scale organized motion of turbulent flow. Additionally, there
is at least the possibility of differences at much higher Reynolds numbers than that
of the present simulation.

3. Future plans

Because this project is at an early stage, the quickest summary of future plans
is to say that we will continue to study the six questions posed in Section 1. To
begin with, we will extend the current procedures to regions where the interface is
not roughly parallel to the wake centerplane.

In addition to the above, we plan to

¢ examine locally interesting regions including topological features both on and just
inside the interface

e develop a means of describing concisely the shape of the interface

e use the unique time-dependent DNS results to determine how the interface moves

and changes shape and to determine where and how it moves into irrotational
fluid.

Data from the wake simulations with large-scale forcing (Moser, Rogers & Ewing
1998), which show a large increase in the sizes and heights of protrusions and
intrusions, may be very useful for these purposes.
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Appendix: Passive scalar detection of turbulent/non-turbulent interfaces
by Xiaodan Cai

A passive scalar has been used to outline the boundary of turbulent and non-
turbulent flow in experimental works, e.g. Weir, Wood and Bradshaw (1981). A tra-
ditional reason for this is that the passive scalar obeys the same advective-diffusive
equations as the vorticity for two-dimensional flow (given a Prandtl/Schmidt num-
ber of order 1). In some flows, such as wakes and mixing layers, the interface be-
tween turbulent and non-turbulent flow is dominated by two-dimensional vortical
structure. Hence, it is expected that the passive scalar can give a good description
of the interface. Based on such observations, an interface-detector is developed in
this study. The algorithm for it is to search through the whole scalar field, which
is constructed by a linear-interpolation from the calculated discrete values, for the
surface with a specific scalar concentration (C,). This technique is applied to a
DNS database of a three-dimensional time-evolving plane wake (Moser, Rogers &
Ewing 1998). The wake has reached an approximately self-similar state with a
mass-flux Reynolds number (equal to the momentum thickness Reynolds number
in spatially developing wakes) of 2000, which is high enough for a short ¥~3/3 range
to be evident in the streamwise one-dimensional velocity spectra. A passive scalar
is advected within the wake and has a value of one (or zero) in the upper (or lower)
external nonturbulent region. Here only the upper interface is analyzed. Fig. Al
shows the scalar contours for typical configurations of the interfaces at the threshold
levels of 0.90 and 0.99. The interfaces are almost continuous, and there exist only
very few islets.

Five threshold values have been tried for the passive scalar to define the upper
interface in this study. Fig. A2 shows the probability density functions for the
interface locations. All of the pdf’s are approximately Gaussian with a skewness
around zero and a flatness around 3.0, as shown in the Table. It is noted that
the mean locations of the interface increase with the threshold values and that the
interface can even cross the centerline to the lower part of the wake when C, < 0.9.

Based on these observations, two sampling methods were investigated to calculate
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TABLE. Statistics of the interface positions
Cs wlb /b Si F;
0.85 0.27  0.18 0.34 3.05
0.90 0.36 019 -0.016 296
0.95 0.46  0.19 0.025 2.93
0.98 0.55 0.19 0.072 2.89
0.99 0.59 021 —-0.69 2.92

the conditional ensemble averages along y relative to the interface. Method I is to
select the lowest y points as the locations of the interface whenever islets or multi-
folded regions appear. Method I1 is to leave off the regions from the sampling space
whenever islets or multi-folded regions appear. The sampling space is limited to
the upper half of the wake. In order to increase the sampling points and reduce the
statistical errors, a bar with 0.2 length-unit (based on the momentum thickness)
wide is used to collect the samples and labeled according to the distance of its
center from the interface. The conditional velocity intensities from the two sampling
methods displayed very similar characteristics; Method II is used for the following
results. Distributions of u?, v?, and w? (longitudinal, transverse, and spanwise
components respectively) relative to the interface are shown in Fig. A3. Inside the
turbulent region, (v?) is relatively uniform while (u?) and {(w?) increase to a peak
value when approaching the interface, which is consistent with the linear theory
prediction by Carruthers and Hunt (1986). In the non-turbulent region, it can be
seen that all of the velocity intensities decay towards zero sufficiently far from the
interface, and there exists a region where (u?) ~ (v?) + (w?) and (v?) = (w?), as
predicted by the Phillips (1955) theory on the irrotational motion induced by the
turbulent boundary flow. These phenomena prevail even when the threshold values
are changed (Fig. A3).

Fig. A4 presents the distributions, for different threshold values, of conditional
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FIGURE A3. Distributions of (u?), ---- (v?) and — — (w?) relative to
the interface for threshold values (a) 0.90 and (b) 0.99
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averages of turbulent energy ¢2, dissipation rate ¢, turbulent shear stress — (uv), and
turbulent viscosity ¢*/e. Vorticity, and hence dissipation rate, should drop sharply
across the turbulent/nonturbulent interface, which is demonstrated in Fig. A4(b).
Furthermore, it is noted that the larger the threshold values, the sharper the edge
between the turbulent and nonturbulent region, which is a good indication that
the above-proposed interface detector works well in this wake flow. It also can be
seen that the larger the threshold values, the more physical the results appear to
be. As the threshold value increases, the peaks around the interface in Fig. A4(b)
are weakened and finally disappear, and the peaks of turbulent shear stress in
Fig. A4(c) shift from the nonturbulent side to the turbulent side. Physically, it
can be argued that the turbulent shear stress cannot be generated by mean shear
rate in irrotational flow, and therefore the peak values in the nonturbulent flow are
unphysical. Meanwhile, it can be argued that there may exist different fluctuating
kinetic energy-generation mechanisms inside and outside the interface. Inside the
interface, the velocity fluctuations are generated by the mean shear rate, which
results in a quite uniform value for ¢*/¢ in Fig. A4(d), while outside the interface,
the velocity fluctuations are generated by the turbulent interface, which is the topic
studied by Phillips (1955). This argument may explain why thereis a big dip around
the turbulent/nonturbulent interface in Fig. A4(d).
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The largest scales of turbulent wall flows

By Javier Jiménez'

1. Introduction

The small scales of wall-bounded turbulent flows have received a lot of attention in
recent years, especially in the near-wall region, in part because of the availability of
direct numerical simulations that made their detailed study possible (Kim, Moin &
Moser 1987). Since those simulations had necessarily moderate Reynolds numbers
and little or no separation between their largest and smallest scales, the study of
the former independently of the latter in them was difficult. The purpose of this
paper is to study the flow scales which are of the order of or larger than the channel
width or the boundary layer thickness. We will see that their contribution to the
integral flow quantities is not negligible.

The resolution of experiments and simulations is usually adjusted so that the
discretized variables are smooth while the size of the numerical box, or of the exper-
imental record, is chosen so that the correlation functions at distances comparable
to the box size decay to a negligible level. The latter is intended to guarantee that
there is little energy at scales larger than the box size, but it has to be interpreted
with care. The energy in a flow that has been low-passed filtered at scales of order
X is proportional to the integral of the correlation function over separations longer
than A and decays slower than the function itself. Since singular spectra such as
those in turbulent flows give rise to algebraically decaying correlation tails, it is
possible to have correlations which appear to have decayed but which still have a
substantial fraction of the energy in their tails.

The peak of the one-dimensional spectrum is moreover typically at k£ = 0. This
becomes important if the filtered signals are the interesting ones such as in acoustics,
where sound attenuation decreases with wavelength and only long waves survive at
long distances.

Large structures are also physically interesting because long wavelengths imply
long lifetimes and large volumes, and their integrated coherent effect can be com-
parable to those of the smaller ones even when their power per unit volume is not.
Thus if the one-dimensional power spectrum of a signal tends to a constant E, as
k — 0, the power is contained in wavelengths longer than A is O(Ep/)), but since
the lifetime of each structure is proportional to A, the total energy per structure
is independent of the wavelength. As an example, even a small transverse velocity
acting for a long time would lead to substantial modifications of the velocity profile.
For a flow to be well represented in this sense implies that its resolved spectrum
should decay at the lowest wavenumbers as well as at the highest ones, which may
never be true in turbulent flows.

1 Also with the School of Aeronautics, U. Politécnica Madrid.
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A less restrictive spectral criterion, involving only considerations of power per
unit volume and, therefore, roughly equivalent to the condition on the correlation
function, is that the product

¢ =kE (k)v (1)
should decay for the lowest observed wavenumbers since that pre-multiplied spec-
trum is proportional to the power in a logarithmic band centered at & (Bullock,
Cooper and Abernathy, 1978). Note that the same is true if the wavelength, A =
2m/k, is used in the abscissae instead of the wavenumber since dlogA = —dlogk
and the integral is the same in both cases. In this paper we will generally use ().

There i1s another reason for studying these largest scales of wall turbulence. We
have already mentioned that in some parts of the flow they carry a substantial
fraction of the kinetic energy and are, therefore, important by themselves. They
may also be simpler to study than regular turbulent structures in the inertial range.
Since they are large but their velocity fluctuations are still small compared to the
velocity differences in the mean flow, their velocity gradients are weak compared to
the mean shear and can be approximately described as quasi-linear. We will in fact
see that they share some of the characteristics of rapidly distorted turbulence.

This suggests the appealing possibility that wall flows could be described, as in
the case of many free-shear ones, in terms of large-scale quasi-linear structures mod-
ulated by essentially isotropic small scales. This would contribute to the unification
of an area of turbulence research, the study of the large scales, which has usually
been considered non-universal.

2. Experimental evidence

2.1 Spanwise scales

Almost all the available information on the energy-containing spanwise scales in
wall turbulence comes from direct numerical simulations. Spectra from two channels
at Re, = 180 (Kim, Moin & Moser, 1987) and Re, = 590 (Mansour, Moser & Kim,
1996) are given in Fig. 1. The spectra of u and w near the wall show the well-known
peak at A} ~ 100 corresponding to the spanwise periodicity of the streaks. It is
interesting that the wall-normal v spectrum peaks at a wavelength which is twice
shorter than the other two. This was already observed in the transverse correlation
functions by Kim et al. (1987), who explained it as corresponding to the diameter
of the streamwise vortices. That explanation is only partly convincing since it is
not clear why it would not apply as well to the spanwise velocity, which is also
presumably associated with the vortices. The same effect is, moreover, observed at
all distances from the wall, where coherent vortices are not necessarily present, and
the effect should probably still be considered unexplained.

As we move away from the wall, the spectral peaks move to longer wavelengths
and, near the center of the channel, show signs of being constrained by the peri-
odicity of the numerical box. This is specially noticeable in the u spectrum of the
high-Reynolds number channel, but all the u and w pre-multiplied spectra above
y/h = 0.5 have their maxima at the second numerical wavelength, making it im-
possible to predict which their behavior would be in a wider box. It is clear, on the
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FIGURE 1. Pre-multiplied power spectrum k,E(k.), as a function of A\}. (a) and
(b), Eyu; (¢) and (d), Eyy; (e) and (f), Eww. (a), (¢) and (e), Re, = 180 channel
from Kim et al. (1987): y* = 4, 17, 23, 38, 50, 66, 84, 107, 141, 180. (b), (d) and
(f), Rer = 590 channel from Mansour et al. (1996): y* = 5, 19, 39, 60, 77, 99, 129,
167, 215, 274, 357, 461, 590. In both cases increasing y* corresponds to a rightward
shift of the short-wavelength end of the spectrum, and lines rotate between solid,
dashed, dotted and chaindotted. All the spectra are normalized to unit area, to
emphasize their frequency content.
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FIGURE 2. Spanwise wavelength of the maxima of the pre-multiplied spectra. o ,
Euy; &, Eyy; 0, Eyyw. Open symbols, Re, = 590; closed symbols, Re, = 180. The
dashed line has slope 1. (a) Wall units. (b) Outer units.

other hand, that the range of scales at Re, = 590 is wider than at Re, = 180, sug-
gesting that, since the wavelengths near the wall clearly scale in wall (Kolmogorov)
units, those near the center-line probably scale in outer units and are proportional
to the channel width.

The spanwise wavelengths of the energy maxima for the different pre-multiplied
spectra are given in Fig. 2. They were extracted manually from the data in Fig. 1
and should, therefore, be only taken as rough approximations. Only spectra whose
maxima are not in one of the two rightmost points have been used in the figure. It
is apparent that the data from both Reynolds numbers collapse very near the wall
to approximately 100 wall units for E,, and E,,,, and grow approximately linearly
as fractions of the channel height beyond y* =~ 50. The maxima of E,, follow the
same trend but are shorter by roughly a factor of two.

The data from v have a somewhat longer useful range near the center of the
channel although it is clear from the inspection of Fig. 1 that even they should be
treated with care. If we take them at face value and assume that their relation with
the other two scales holds all the way to the center-line, the maximum size of of
the v structures would be A.,/kh ~ 1, and those of u and w would be X,/h ~ 2.
This agrees with the result of Kim et al. (1987) that the velocity correlations decays
beyond z/h = 2.

Note that the scales given by these maxima represent the size of the energy-
containing structures and are different from the integral scale

_r__EO _
T2 f0°° E(k)dk’
which can be shown to be roughly proportional to the width of the graph of ¢, when

plotted against log A, rather than to its maximum. It is actually easy to construct
families of spectra such as

E(k) = [1 4 a(a — 1)k]e™*F, (3)

(2)

0
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FIGURE 3. Pre-multiplied long-wavelength power spectrum k.E,.(k;) for the
pipe in Priymak and Miyazaki (1994) at y* = 3. The dashed line is the spectrum
in Kim et al. (1987) at y* = 6, included for comparison. Symbols in both cases are
the numerical wave numbers.

which have a fixed integral length and an arbitrary location of the energy-containing
peak. In this example )\ is always 7/2, while the location Amqz of the maximum
of ¢ varies from approximately 27 for a = 1 to wa for a > 1.

We will later find cases in which the position of the peak is not enough to charac-
terize the energy-containing scales since the spectrum is dominated by an E ~ k1
range, which appears as a broad plateau in ¢(), but that is not the case here.

2.2 Streamwise scales

There is evidence of very long streamwise wavelengths in pipes and channels
even if the numerical simulations of Kim et al. (1987) show that the correlations
decay beyond z/h & 4 in the streamwise direction. In this section we will use h to
represent either the half-width of a channel or the radius of a pipe, while § will be
reserved for the boundary layer thickness.

Priymak and Miyazaki (1994), using coarse numerical simulations of a low Reynolds
number pipe (Re, = 150), find that their pre-multiplied streamwise spectra have an
E ~ k71 range that only decays beyond A;/h = 57 (Fig. 3). This low-wavenumber
behavior was found below y* = 60 (y/h = 0.4). Note that as mentioned above
a substantial part of the pre-multiplied spectrum extending beyond the longest
resolved wavelength implies that part of the energy is not properly represented.

Bullock et al. (1978) found a similar low-wavenumber behavior in their exper-
imental investigation of a turbulent pipe at Re, = 2600. Their pre-multiplied
longitudinal velocity spectra contain two ‘peaks’. The one at the shortest wave-
length is at A} = 600 and is the only one present near the wall. Above y* ~ 60
another peak appears, or rather a k™! range develops between the near-wall peak
and a mild maximum at low wavenumbers which vary from A, /h =~ 3 at y* = 60 to
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Az/h =20 at y/h =~ 0.6. Beyond this point, the long-wavenumber peak disappears
and is replaced by a shorter one at A; = h, which can be traced to the migration
to longer wavelengths of a weakened version of the near-wall peak.

Both wavelength ranges are different. Radial correlations of the streamwise veloc-
ity show that the low wavenumbers are correlated across a wide radial range while
the high ones are local in the radius.

Perry, Henbest and Chong (1986) made a detailed study of the streamwise u and
v spectra in smooth pipes with Re, = 1,600 — 3,900, with a special emphasis on the
extent and scaling of the E ~ k~! range. They find that, in the region y* > 140
and y/h < 0.3, Ey, has a k™! range which extends between a short-wavelength
limit at A;/y ~ 5 and a longer one at A, /h & 15. They present no measurements
within the near-wall region, but if their short-wavelength limit were extrapolated to
the inner edge of the logarithmic layer at y* ~ 100, it would fall in the same range
as the near-wall peak mentioned above. Beyond y/h = 0.3 the short-wavelength
end of the k~! range is no longer proportional to y and settles around Az/h = 3.
Although the uncertainties from reading printed spectra are large, the order of
magnitude of these wavelengths is comparable to the two ‘peaks’ found by Bullock
et al. (1978). The marching short-wavelength limit would originate from the near-
wall peak and eventually connect with the A, =~ h outer peak observed in the center
of the pipe by Bullock et al., while the long-wavelength peak would be the same in
both experiments. It is interesting that in both cases the k~! range is only found in
what is usually considered the logarithmic region and disappears towards the center
of the pipe.

In a previous paper Perry and Chong (1982) had presented results for rough
pipes at comparable Reynolds number, although only for E,, in a narrow range of
y stations within the logarithmic region. The k™! is very apparent and appears to
be longer than in the smooth case. Its long-wavelength limit is at the same location
as in the latter, but it extends to shorter wavelengths of the order of A, ~ y.

The streamwise spectra for the two numerical channels discussed in the previous
section are shown in Fig. 4. There is a clear difference between the spectra of the
streamwise fluctuations and those of the other two components. While the latter
show only a mild drift to longer scales as they get farther from the wall, the former
have most of their energy at very long wavelengths, in agreement with the previous
discussion, and are clearly constrained by the numerical box. Note that in the
Rer = 180 channel the short end of the k™! range at the edge of the similarity
region would be 5y* & 300, shorter than the expected viscous length near the
wall. As a consequence the position of the spectral peak moves towards shorter
wavelengths as it moves away from the wall.

The short-wavelength peak found near the wall in all these cases is probably re-
lated to previous observations in experiments and numerical simulations. Clark and
Markland (1971) report that the mean streamwise spacing between near-wall vor-
tices is A} = 440, while various investigators have reported that the mean distance
between substructures within turbulent boundary layer spots is A} a2 200 — 500 (see
Sankaran et al. 1988, and references therein). Jiménez & Moin (1991) observed that
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FIGURE 4. Pre-multiplied power spectra ¢(A;). Symbols as in Fig. 1, but in
this case the spectra for Re, = 180 move to shorter wavelengths with increasing
distance from the wall.

turbulence could not be maintained in numerical boxes with a streamwise periodic-
ity shorter than A} ~ 350, while Jiménez & Pinelli (1998) showed that turbulence
decays if the streamwise coherence of the velocity streaks near the wall is disturbed
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below A} =~ 400. In both cases the minimum streamwise period corresponds to
boxes containing a single pair of streamwise vortices flanking each sublayer velocity
streak.

The long wavenumber range has been reported less often, probably in most cases
because of insufficient extent of the numerical or experimental records. Choi and
Moin (1990), for example, while studying the wall pressure spectra in the channel
of Kim et al. (1987), noticed a spurious peak at their lowest wavenumber, k,h = 0.5
(Az/h = 4r), which they attributed to the periodicity of the box, suggesting that
the long wavelengths were poorly resolved.

In boundary layers, whose low-wavenumber characteristics need not be identical
to those of internal flows, Farabee and Casarella (1991) measured spectra of the
wall pressure fluctuations down to very low frequencies. They found that the low-
wavenumber end of their pre-multiplied spectra collapses well in outer flow variables
and only decreases beyond k.6 ~ 0.25 (A\/§ ~ 8r), where § is a boundary layer
thickness roughly equivalent to the pipe radius. Their Reynolds numbers are Re, ~
1,000 — 2,000.

Nagib and Hites (1995) and Hites (1997) measured longitudinal velocity spectra
in boundary layers with Reg = 4 — 20 x 103, corresponding to Re, ~ 1.5 — 6 x 103.
They report a k~! range above y* = 50, extending from a short-wavelength limit
at A} = 600 to a longest wavelength of A, /6 ~ 4. The latter is substantially shorter
than the long-wavelength limit observed in pipes and channels and also shorter than
the wavelength implied by the pressure spectra of Farabee and Casarella (1991).
This might be due to a procedural artifact. Their spectra are computed digitally
from records which limit them to wavelengths shorter than about A} ~ 10%, which
at their highest Reynolds numbers corresponds to A;/é =~ 20. Since the last few
points in the spectrum are generally corrupted by the windowing algorithm, this
implies that the location of their low frequency peak is uncertain. It is interesting
that their ¥~! range is only present below y* ~ 200 and that above that range
their pre-multiplied spectra contain a single peak at long wavelengths, suggesting
again, when compared to other results, that their longest wavelengths may have
been missed by the experimental procedure. In fact, in a different analysis of the
same data, Hites (1997) measured the fraction of the streamwise kinetic energy in a
low-pass filtered version of his velocity signals and found that about 30-50% of the
energy was associated with wavelengths longer than the long-wavenumber peak in
his spectra and that this fraction increased with the Reynolds number. About 15%
was associated with wavelengths longer than A, /6§ = 10. This was observed at the
only two locations studied in this way, y* = 100 and 300.

The experimental results for the longitudinal extent of the streamwise velocity
fluctuations are summarized in Fig. 5. Figure 5agives the location of the short-
wavenumber end of the energy-containing range. This is the only longitudinal scale
which exists at all positions across the flow. Near the wall it corresponds to an
isolated energy peak in the pre-multiplied spectrum near A} ~ 600. It grows away
from the wall until y/h =~ 0.3, and it remains constant or decreases slightly above
that level. The few data available do not collapse well in either wall or outer units,
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FIGURE 5. Wavelength of the two limits of the k™! range in Eyu(k:), as a
function of the distance from the wall. o , Hites (1997), Re, = 1350; & , Hites(1997),
Re, = 5900; o, Bullock et al. (1978), Re, = 2600; v , Kim et al. (1987), Re, = 180;
o, Mansour et al. (1996), Re, = 590; —— , Perry et al. (1986), Re, ~ 3000. (a)
Short-wavelength limit in wall units. (b) Long-wavelength limit, in outer units. The
dashed line has slope 1/2. (¢) Ratio between the two limits of the energy-containing
range.

and the support for a linear growth with wall distance is only moderate. The range
of useful experimental Reynolds available is not large, Re, = 1,000 — 6,000, but
in that range the maximum wavelength of this peak near the center of the channel
is A;/h = 1 — 2. We have seen in the previous section that the spanwise extent of
the structures containing the streamwise kinetic energy varies from A} = 100 near
the wall to A, & 2h at the center. Assuming that the structures involved are the
same in both cases, this would imply that the large scales vary smoothly from a
streamwise aspect ratio of about 6 near the wall to approximate isotropy near the
center.

The real picture is more complicated. Between y* =~ 100 and y/h ~ 0.3 - 0.5 2
second limit appears, which is given in Fig. 5. It scales well in outer units within
the present range of Reynolds numbers and constitutes the long-wavelength limit
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of an E ~ k™! spectral range which contains essentially all the streamwise kinetic
energy. The available data, except for those in Perry et al. (1986), suggest that the
ratio between those two limits is always approximately equal to 10 (Fig. 5¢) and
that both scales grow as y!/2. The long-wavelength limit disappears in the center
of the channel, and the k™! range again collapses to a single spectral peak. The
existence of the k~! range approximately coincides in these experiments with the
logarithmic region of the mean velocity profile.

The square-root dependence on wall distance is surprising and would imply that
the length scale is determined by some viscous mechanism, probably based on an
eddy viscosity which stays constant across the flow. This would be difficult to
understand, and there is enough scatter in the data to leave open the possibility of
a linear dependence, but this is one of the many points in these data that call for
urgent clarification.

The data on the other velocity components are scantier. The wall-normal com-
ponent v has been measured in several occasions, and there is general agreement
that it does not contain a k™! range (Perry et al., 1986). The k~3/3 inertial range
in its one-dimensional streamwise spectrum connects directly with a low-frequency
range which is essentially flat. The corner between the two regimes is at about
the same scale as the short-wavelength end of the k~! range in E,,, and it is at
those scales that most of its energy is concentrated. The data in Fig. 4 support this
interpretation.

There are even less data on the spanwise component w. The numerical data
in Fig. 4 suggest that there is no k™! spectrum for this component and that its
characteristic wavelengths are those of v rather than u. The same can be deduced
from the spectra given by Lawn (1971), in a pipe at Re, = 2,000. Although his
spectra are noisy and clearly truncated at low frequency, they fall in two groups:
long ones for E,,, which continue growing at his lowest measured frequencies, and
short ones for E,, and Ey,,, which flatten beyond A, /h = 2.

Perry, Lim and Henbest (1987) suggest that E,,,, has a short k~! range in contrast
to E,,, but inspection of their data reveals that if this range exists it is much
narrower than that of F,, and is located at wavelengths which are an order of
magnitude shorter than those of u.

Saddoughi & Veeravalli (1994) and Saddoughi (1997) made measurements in
rough perturbed boundary layers at Re, = 30,000 — 160,000. Although their anal-
ysis 1s centered on the isotropy of the inertial range, the long-wavelength behavior
of their spectra can be used as a check of the Reynolds number independence of the
previous conclusions since their Re, are at least an order of magnitude larger than
those discussed up to now. Their spectra also fall clearly in a short group for v and
w and a long one for u.

2.3 Reynolds stresses

Perry et al. (1987) suggest, mostly on theoretical grounds, that no k~! range
should be found in the E,, cospectrum. The basic argument, which goes back to
Townsend (1976) and which is implicit in the classical distinction between ‘active’
and ‘inactive’ motions, is that, since Reynolds stresses depend on the presence of v,
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FIGURE 6. Pre-multiplied power co-spectra. (a) and (b) k,Euy(k:), as a function
of A\t. (¢) and (d) k;Euv(k:), as a function of A}. (a) and (c) Re, = 180 channel
from Kim et al. (1987): y* =17, 23, 38, 50, 66, 84, 107, 141. (b) and (d), Re, = 590
channel from Mansour et al. (1996): y* = 16, 60, 77, 99, 129, 167, 215, 274, 357,
461. In both cases lines rotate between solid, dashed, dotted, and chaindotted.
The spectra are not normalized to unit area, and decreasing amplitudes generally
correspond to larger distances from the wall. Note that, as for the velocity spectra

in Fig. 4a, the scale of the Re, = 180 cospectrum in (c) decreases away from the
wall.

they can not be present at scales at which the latter is not active. A little thought
reveal that this is not necessarily so. Consider the low-frequency spectral range in
which Eys ~ k™! and E,, ~ 1. The only limitation for the cospectrum is that
E2 < Eu,E,, and it is possible to have substantial Reynolds stresses even at
wavenumbers at which the v spectrum is already constant.

The streamwise and spanwise cospectra from the two numerical channel simula-
tions are given in Fig. 6. The drift in A, away from the wall is similar to that of
u and w in Fig. 1, and there is a clear suggestion of a k! range in the streamwise
cospectrum of the higher Reynolds number case. A comparison with Fig. 4 shows
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that the characteristic wavelengths of the cospectra are those of u rather than those
of v.

Krogstad, Antonia and Browne (1992) give spectra for E,y, Euy, and E,, in
a boundary layer at Re, = 2,000. TkLe pre-multiplied E,, and E,, have broad
maxima, both of which only decay beyond A, /é ~ 6, while E,, has a narrower peak
at wavelengths which are an order of magnitude shorter.

Saddoughi & Veeravalli (1994) measured E,, at y/§ = 0.1 and 0.4. The cospectra
at the near-wall station have a well-developed k7! range that extends from A/6 ~ 0.5
to A/8 =~ 7. Note that these values are very close to the limits of the k]! range for
E.. given in Fig. 5 at this distance from the wall. Their cospectra at the mid-layer
location have essentially no k~! range.

Lawn (1971) measured some cospectra. They are generally short, like v and w,
but it is interesting that the two cospectra for which y* > 200 and y/h < 0.5 are
‘long’ and continue to increase beyond their lowest wavenumber A, /h = 50.

3. Discussion

The general picture suggested by the data discussed above is that there exist in
the region of the flow generally associated with a logarithmic velocity profile very
long structures with longitudinal aspect ratios of the order of 10, which essentially
consist of streamwise velocity fluctuations. They contain most of the streamwise ki-
netic energy. Spanwise and wall-normal velocities have shorter wavelengths, roughly
coincident with the shorter end of the scales of the u structures, and are only slightly
elongated in the streamwise direction.

Long streamwise structures which contain predominantly streamwise velocity can
best be described as a system of longitudinal jets and are reminiscent of the sublayer
low- and high-velocity streaks, although in this case they would clearly be turbulent
themselves. In the sublayer streaks, for example, the quasi-streamwise vortices
responsible for the v and w fluctuations are also shorter than the streaks, and the
latter are the result of the action of several vortex pairs (Jeong, Hussain, Schoppa
& Kim 1997).

In Fig. 7 we give an instantaneous picture of the u and v contours for a wall-
parallel plane of the numerical Re, = 590 numerical channel from Mansour, Moser
and Kim (1996), even if we have seen that their box is too short to represent these
structures correctly. There is clearly a large low-velocity streak on the upper half
of the u-plane which is not present in v. The transverse section in the lower frame
of the figure shows that this is not an isolated case and that there are several jets
at roughly the same scale. They are distinct from the sublayer streaks, being much
larger, but they seem to form from the joint effect of several of them.

Komminaho, Lundbladh, and Johansson (1996), who have observed streamwise
structures of the order of 404 in low-Reynolds-number Couette flow, publish snap-
shots of their simulations which look strikingly similar to Fig. 7.

Very large streaky features with widths and heights of several hundred meters
are known to occur in the atmospheric boundary layer, apparently associated with
storms having a large geostrophic shear (J. C. R. Hunt, private communication), and
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FIGURE 7. Instantaneous filtered velocities in the channel of Mansour et al.
(1996), Re, = 590. (a) and (b): y* = 300 from the lower wall. Flow is from left
to right. Velocities are filtered by averaging on a 133 stencil (Azt x Ayt x Azt =
130 x 75 x 60). (a) Streamwise velocity fluctuations; contours are u' = +0.75(1).
Negative contours are dashed, and the fluctuations are computed with respect to the
instantaneous mean velocity on the z-z plane. (b) Wall-normal velocity; contours
are v' = £0.375(0.5). (¢) Transverse section of u’ at z¥ = 2500. Fluctuations, filter
and contours as in (a), but there is no filtering in y.
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have been observed underneath tropical hurricanes (Wuman and Winslow, 1998).
Smaller scale features, although still much larger than sublayer streaks, are observed
in wind-blown sand in beaches (Jiménez, personal observation), and in blowing snow
in snow fields (Adrian, private commurication).

Perry et al. (1986) describe their results in terms of an ‘attached eddy’ model
which is an elaboration of an earlier one proposed by Townsend (1976). Briefly, in
the logarithmic region, the v structures are blocked by the presence of the wall and
are constrained to sizes at most of order y. This argument has been extended by
Hunt (1984) to any turbulent flow in the presence of a wall, independently of the
presence of shear, and to wall-normal correlations lengths. These blocked eddies
would form the ‘short’ A; ~ y peak in both v and u. A similar peak would also be
expected to appear in A;, and we saw evidence for it in Fig. 2. For the tangential
components there is no blocking effect, and much larger structures are possible.
The peak at A ~ y would only constitute a short-wavelength limit for them, and
one could expect a range of eddies, large in the tangential directions but attached
to the wall in the wall-normal one. Perry et al. (1986) give a very specific model for
these eddies as attached hairpin vortices and use it to derive the k~! form of the
spectrum. The latter behavior is, however, more general than the hairpin model
and can be derived from simple dimensional considerations for near-wall structures
that are so large that their distance to the wall should not be important (Perry and
Abell, 1977).

We have mentioned in the introduction that the internal velocity gradients associ-
ated with these large structures are so low that their dynamics should be dominated
by the shear in the mean velocity profile. They can, to a first approximation, be
considered linear and described by rapid distortion theory. The blocking of v men-
tioned above is one such linear effect, but it is independent of the mean shear and
depends only on the presence of an impermeable wall. It is easy to see that the effect
of a mean shear is that any initial turbulence gets deformed into a series of stream-
wise jets. In essence, any spectral component with a non-trivial dependence on z
gets damped by the shear, and only the z-independent motion in the cross-plane
is left. This transverse motion depends on the initial conditions and is uncoupled
from the streamwise velocity. Except for viscosity, which would be negligible at
these large scales, it is undamped and will last for long times. The u component
is transported by this transverse velocity as a passive scalar (Orlandi and Jiménez
1994). Wherever v moves towards the wall, u increases, and vice versa. Even if
the transverse flow is weak, the modulation of u increases linearly in time and will
grow to form large amplitude longitudinal jets until either viscosity or nonlinear
effects halt the growth. It was shown by Orlandi & Jiménez (1994) in the context
of ‘laminar’ near-wall streaks that this processes changes the mean velocity profile
and, therefore, carries Reynolds stresses.

4. Conclusions and open questions

We have shown that eddies with streamwise lengths of the order of 10— 20 bound-
ary layer thicknesses are present in the logarithmic region of wall-bounded flows.
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They contain a substantial fraction of the streamwise kinetic energy and, probably,
also of the Reynolds stresses. They can be approximately visualized as a system of
streamwise turbulent jets, roughly comparable to the sublayer velocity streaks at a
much larger scale.

We have given arguments that they should be describable to a first approximation
by the combined linear effects of the blocking by the wall and of the mean shear.
The first effect has been treated, for example, by Hunt (1984), who showed that it
explains the difference between v and the two tangential spectra. In the absence of
a mean shear, there should be no difference in the behavior of the u and w spectra,
both of which should be ‘large’. We have shown that shear breaks that symmetry
and leads directly to longitudinal jets and to a u spectrum which is much longer
than the one for w.

The appeal of this argument is that it provides some unification to the arguments
on the largest scales of turbulent flows. It has been understood for some time that
the large structures of free shear flows correspond closely to the most unstable eigen-
functions of their mean velocity profiles (Cimbala, Nagib and Roshko, 1988; Gaster,
Kit and Wygnanski, 1985). This explanation does not work for wall-bounded flows,
whose profiles are typically stable, but it is easy to convince oneself that the linear
mechanism described at the end of the last section is nothing but the result of the
neutrally-stable Squire’s modes of the inviscid Rayleigh stability equation for the
mean profile (Betchov and Criminale 1967).

A unified theory for all these largest structures would treat them as solutions of
the linear, inviscid stability equations. If an unstable eigenvalue exists, it dominates
the initial value problem. Otherwise, the linearly growing Squire’s modes prevail.

As satisfying as that conclusion might be, it is clear that it should only be con-
sidered a preliminary step of a wider work program. Many questions are left unan-
swered.

Some of them are experimental. There is essentially no information on the span-
wise structure of these large scales. We lack experimental data, and the Reynolds
numbers of the numerical simulations are too low to draw scaling conclusions. The
data on the streamwise scales is better but partially contradictory. Most of the
available high Reynolds number experiments either lack spectral information, have
too few y-stations, or have data records which are too short to capture the largest
scales. The situation is specially bad for the spanwise velocity component w and
for the cospectrum, for which contradictory interpretations exist.

Except with the use of massive probe rakes it is unlikely that experiments would
give geometrical information about the structure of these eddies. Numerical simula-
tions should help, but the twin requirements of very long boxes and high Reynolds
numbers make direct simulations difficult. It should be possible, however, to at-
tempt large eddy simulations of a few cases to clarify both the scaling an the ge-
ometry.

On the theoretical side, the linear model outlined above is clearly only a first
approximation. Nonlinearity has to be taken into account although, hopefully, only
as a secular perturbation. In free shear flows it appears in the form of Reynolds
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stresses that modify the mean profile responsible for the instability. This is probably
the root of the ‘marginal instability principle’ used by Lessen (1978) and co-workers
to explain some of their properties. This nonlinear mechanism does not work in wall
flows because the mean profile does not feed back into the transverse velocities of
the Squire’s modes. Weakly nonlinear models of the near-wall streaks have been
proposed by Waleffe (1997) and others, and they could perhaps be adapted to the
present case. A cycle for the generation of large streamwise structures in a turbulent
profile was proposed by Townsend (1976).

Two especially troublesome aspects of the experiments are related to the question
of nonlinearity. The first is the difference of about a factor of 2 between the observed
spanwise wavelengths of v and of the other two velocity component (see Figs. 1 and
2). It is difficult to explain it as a linear property. The second is the apparent
y'/? scaling of the longitudinal scales in Fig. 5 and the corresponding finite range
of wavelengths associated with the k! range, which is supported by the cospectral
measurements of Saddoughi and Veeravalli (1994) at higher Reynolds numbers.
The square-root scaling suggests a mechanism which is more global than strict self-
similarity based on local conditions, but the finite extent of the k~! range suggest
the opposite. More experimental results are needed in both cases.

The pay-off of this work should come in various ways. By far the most interesting
would be the already discussed possibility of unifying the understanding of the large
turbulent scales, which are at present considered non-universal and usually treated
in separate ‘botanical’ ways. Some practical applications may also follow. Since
these structures contain energy and Reynolds stresses, they are of practical impor-
tance, but their large size makes them expensive to compute. A quasi-linear model
would open the way for their ‘super-grid’ modeling (S. Lele, personal communica-
tion). We have already mentioned that they probably control the low frequency
noise from boundary layers.

This research has been supported in part by the Center for Turbulence Research
and by AFOSR grant #F49620-97-1-0210. Partial support was also provided by
the Spanish CICYT under contract PB95-0159, and by the European Commission
program E980130118. I am indebted to P. Bradshaw, J. C. R. Hunt, A. E. Perry
and V. Zakharov for illuminating discussions, and to J. Kim, R. D. Moser and
S. Saddoughi for providing either unpublished or electronic versions of their data.
A. A. Wray reviewed a early version of this manuscript and provided thoughtful
comments.

REFERENCES

BETCHOV, R. & CRIMINALE, W. O. 1967 Stability of parallel flows, Academic
Press.

BuLrock, K. J., CoOPER, R. E. & ABERNATHY, F. H. 1978 Structural similarity
in radial correlations and spectra of longitudinal velocity fluctuations in pipe
flow. J. Fluid Mech. 88, 585-608.



The largest scales of turbulence 153

CIMBALA, J. M. NaGis, H. M. & RosHKO, A. 1988 Large structure in the far
wake of two-dimensional bluff bodies. J. Fluid Mech. 190, 265-298.

CLARK, J. A. & MARKLAND, E. 1971 Flow visualization in turbulent boundary
layers. Proc. Am. Soc. Civil Eng., J. Hydraulics Diwv.. 97, 1635-1664.

CHol, H. & MoIN, P. 1990 On the space-time characteristics of wall-pressure
fluctuations. Phys. Fluids A. 2, 1450-1460.

FARABEE, T. M. & CASARELLA, M. J. 1991 Spectral features of wall pressure
fluctuations beneath turbulent boundary layers. Phys. Fluids A. 3, 2410-2420.

GASTER, M., KIT, E. & WYGNANSKI, I. 1985 Large-scale structures in a forced
turbulent mixing layer. J. Fluid Mech. 150, 23-39.

HITES, M. H. 1997 Scaling of high-Reynolds number turbulent boundary layers in
the National Diagnostic Facility. Ph. D. Thesis, Illinois Inst. of Technology.

HuNT, J. C. R. 1984 Turbulence structure in thermal convection and shear-free
boundary layers. J. Fluid Mech. 138, 161-184.

JEONG, J., HussaIN, F., ScHopPa, W. & KiM, J. 1997 Coherent structures near
the wall in a turbulent channel flow. J. Fluid Mech. 332, 185-214.

JIMENEZ, J. & MOIN, P. 1991 The minimal flow unit in near wall turbulence. J.
Fluid Mech. 225, 221-240.

JIMENEZ, J. & PINELLI, A. 1998 The autonomous cycle of near-wall turbulence.
Submitted, J. Fluid Mech.

KiM, J., MoIN, P. & MosER, R. D. 1987 Turbulence statistics in fully developed
channel flow at low Reynolds number. J. Fluid Mech. 177, 133-166.

KOMMINAHO, J., LUNDBLADH, A. & JOHANSSON, A. V. 1996 Very large struc-
tures in plane turbulent Couette flow. J. Fluid Mech. 320, 259-285.

KROGSTAD, P-A., ANTONIA, R. A. & BROWNE, L. W. B. 1992 Comparison
between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech.
245, 599-617.

LAWN, C. J. 1971 The determination of the rate of dissipation in turbulent pipe
flow. J. Fluid Mech. 48, 477-505.

LESSEN, M. 1978 On the power laws for turbulent jets, wakes and shearing layers
and their relationship to the principle of marginal instability. J. Fluid Mech.
88, 535-540.

MANSOUR, N. N., MoseR, R. D. & KiM, J. 1996 Reynolds number effects in low
Reynolds number turbulent channels, Case PCH10 in AGARD AR-345, 5-8

NAGIB, H. & HrTEs, M. H. 1995 High Reynolds number boundary-layer measure-
ments in the NDF. AJAA Paper. 95-0786

ORLANDI, P. & JIMENEZ, J. 1994 On the generation of turbulent wall friction.
Phys. Fluids A. 6, 634-641.

PERRY, A. E. & ABELL, C. J. 1977 Asymptotic similarity of turbulence structures
in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785-799.



154 Javier Jiménez

PERRY, A. E. & CHONG, M. S. 1982 On the mechanism of wall turbulence. J.
Fluid Mech. 119, 173-217.

PERRY, A. E., HENBEST, S. & CHONG, M. S. 1986 A theoretical and experimen-
tal study of wall turbulence. J. Fluid Mech. 165, 163-199.

PERRY, A. E., LiM, K. L. & HENBEST, S. M. 1987 An experimental study of
the turbulence structure in smooth- and rough-wall boundary layers. J. Fluid
Mech. 177, 437-466.

PriyMAK, V. G. & MivAazaki, T. 1994 Long-wave motions in turbulent shear
flow. Phys. Fluids. 6, 3454-3464.,

SANKARAN, R., SokoLov, M. & ANTONIA, R. A. 1988 Substructures in a tur-
bulent spot. J. Fluid Mech. 197, 389-414.

SADDOUGHI, S. G. 1997 Local isotropy in complex turbulent boundary layers at
high Reynolds number. J. Fluid Mech. 348, 201-245.

SADDOUGHI, S. G. & VEERAVALLI, S. V. 1994 Local isotropy in turbulent bound-
ary layers at high Reynolds number. J. Fluid Mech. 268, 333-372.

TOWNSEND, A. A. 1976 The structure of turbulent shear flows, second ed., Cam-
bridge U. Press.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids. 9,
883-900.

WUMAN, J. & WINSLOW, J. 1998 Intense sub-kilometer-scale boundary layer rolls
observed in hurricane Fran. Science. 280, 555-557.



L
Q3

,37/

Center for Turbulence Research ‘ 155
Annual Research Briefs 1998

The instability of streaks in near-wall turbulence

By G. Kawahara, J. Jiménez, M. Uhlmann' AND A. Pinelli'

1. Motivation and objectives

Several aspects of the self-sustaining mechanism of near-wall turbulence have been
studied recently (see Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995; Waleffe
1997; Schoppa & Hussain 1997; Jiménez & Pinelli 1998). It is well-known that there
are two key structures, streamwise vortices and streaks, in the near-wall region.
Streamwise vortices generate streaks through the deformation of the mean flow by
their induced cross-flow advection. The streaks, which are nearly uniform in the
streamwise direction, become unstable, bending along the streamwise direction and
leading to the production of streamwise vorticity. Finally, the produced streamwise
vorticity evolves nonlinearly into streamwise vortices. In this manner streamwise
vortices and streaks generate each other sequentially to sustain near-wall turbulence.

The instability of streaks, to be discussed in this report, is expected to be a crucial
ingredient in the self-sustaining cycle. If the streaks were not unstable, then the
streamwise vortices should decay under the action of viscosity and so also should the
streaks. This decay would mean a termination of the regeneration cycle. Therefore,
controlling the streak instability could reduce drag or enhance heat and momentum
transfer in near-wall turbulent flows. The control of streaks seems to be easier
than that of streamwise vortices since streaks have much larger length scale in the
streamwise direction compared to that of streamwise vortices. Because streaky flows
over a wall depend on the spanwise direction as well as the wall-normal direction,
we cannot apply Squire’s transformation to the streak instability, and thus we must
consider the three-dimensional mechanism for the instability.

Waleffe (1995, 1997) and Waleffe & Kim (1997) examined numerically the lin-
ear stability of streaks in a plane Couette flow at a low Reynolds number. They
employed the streamwise velocity field deformed by assumed streamwise rolls as
a base flow to demonstrate that sinuous modes, which have often been observed
experimentally and numerically, actually grow via the instability mechanism. They
stated that the instability originates from inflection points, i.e. wake-like instability,
in the spanwise variation of streaky flows. Reddy et al. (1998) investigated the same
instability systematically in plane Poiseuille flow as well as in plane Couette flow
to study subcritical transition. For a turbulent channel flow, on the other hand,
Schoppa & Hussain (1997, 1998) examined the time-evolution of small disturbances
embedded in a model flow for streaks (on only one wall) by using direct numerical
simulations. They found an exponential growth of sinuous modes and discussed the
mechanism of the instability. They remarked that the streak instability is not the

1 The School of Aerconautics, U. Politécnica Madrid
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same as the wake-like instability; rather, it is similar to the oblique instability of a
shear layer. However, at least in the initial linear phase, the structure of growing
disturbances which Schoppa & Hussain (1998) observed in their turbulent channel
flow is similar to that in a plane Couette flow where the streak instability has been
considered to be the same as the wake-like instability, as mentioned above. Much
effort has been devoted to investigating the streak instability, but we must admit
that our knowledge is still poor concerning the mechanism and the structure of the
instability.

The main objectives of our present work are to elucidate the conditions for the
streak instability in a turbulent channel flow and to demonstrate the generation
mechanism of the streamwise vorticity through the streak instability. We expect
that the understanding of the conditions and the streamwise vorticity generation in
the streak instability could provide useful information for turbulence control in near-
wall flows. In order to accomplish these objectives, we have performed numerically
the linear stability analysis of a turbulent-channel-type base flow with a periodic
undulation in the spanwise direction.

2. Accomplishments

2.1 Base flow

In the following linear stability analysis, z, y, and 2z are used to represent the
streamwise, the wall-normal, and the spanwise coordinates, respectively. Friction
velocity u, and channel half-width & (and a resulting time scale h/u,) are taken as
reference velocity and length (and reference time) for non-dimensionalization.

The base flow to be considered here is a unidirectional flow and has only the
z-component of dimensionless velocity, U. U is dependent on both y- and z-
coordinates as

U(y, 2) = Uo(y) + Ur(y) cos(yz), (1)

where Up(y) stands for a typical mean velocity profile of a turbulent channel flow
and is given by numerical integration of (see Reynolds & Tiederman 1967)

d_U _ Rer(y — 1)

dy = 1+u(y-1) (0<y<2) ®

The function v,(€) is expressed as

v(©) = 3 {1+ K- enae e (1-ew (—%—"ﬂ))]} -1
3)

=]

Here
ush

Re, = (4)

is a Reynolds number, and v is the kinematic viscosity of the fluid. In this work
we restrict ourselves to a low-Reynolds-number turbulent channel flow by setting
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FiGURE 1. Contour plot on (y, z)-plane of the streamwise velocity of the base flow
(1) for (a) AU = 3.0, ¥ = 0.9; (b) AU = 4.0, v = 10.8; and (c) AU = 4.0,y =27.0.
Contour increment is 2. Only half the height of the channel is shown in (b) and (c).
Modes I, II and III in Fig. 4 have been obtained respectively for the base flows (a),
(b), and (c).

Re, = 180. In this case the value of the Reynolds number based on the channel
centerline velocity is 3300. We have set the values of the adjustable parameters in
(3) as K = 0.525, A = 37 so that the velocity profile Uo(y) can fit a realistic profile
for Re, = 180 (Waleffe, Kim & Hamilton 1991). On the right-hand side of (1)
the second term represents low- and high-speed streaks alternating in the spanwise
direction with dimensionless wavenumber . U;(y) is the dimensionless amplitude
of the spanwise variation given by

Voyexp(—oy?)
exp(—1/2)/v2’

Ui(y) = AU (5)

which has a maximum AU at y = (20)~1/? and is localized on the lower wall y = 0.
Here, we set 0 = 18 so that the maximum streak velocity (and so the maximum
wall-normal vorticity YAU) may be located at y = %, i.e. 30 wall units. Figure 1
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shows the contour plot on (y, z)-plane of the streamwise velocity for the three typical
base flows to be discussed in §§2.4 and 2.5.

We confirmed that the y-dependence (5) of streaky flows approximately represents
that of real streaks in comparison to the streamwise velocity fluctuation in direct
numerical simulations. A similar type of streaks to (5) was also used in Schoppa &
Hussain (1997, 1998).

We should note that the base flow (1) is not an exact solution to the Navier-Stokes
equation and the actually observed streaky flows have weak time- and z-dependence.
However, we believe that the base flow (1) is valid as the first step of the analysis
because real near-wall streaks have much larger time and streamwise length scales
than those of typical turbulence structures, e.g. streamwise vortices. Another
possibility is to obtain fully nonlinear equilibrium solutions, which correspond to
streaky flows, in some moving reference frame. But this lies outside the scope of the
present work. As is well known, the turbulent-channel-type base flow Uy(y) alone
does not possess any unstable eigenmodes of the linearized Navier-Stokes equation.

2.2 Linear stability analysis

When we consider the linear stability problem for the base flow (1), we cannot
use Squire’s transformation, and thus we must consider three-dimensional distur-
bances. If wall-normal disturbance velocity v and vorticity 7 are taken as dependent
variables, the time-evolution of an infinitesimal disturbance may be described by
the extended Orr-Sommerfeld equation

1
<6t+Uar_R

v2> V2o — [(82 — 8%) U] 8,v

€r
-2(0.U) 0 (Oyw — 8,v) — 2(8,0,U) 0w =0, (6)
and by the extended Squire equation

(at +UB, — — v?) 7 —(8:U)8yv + (8,U) 8,v + (8,8,U) v + (82U) w = 0 (7)

Re-,
(see Waleffe 1995), where spanwise disturbance velocity w is related to v and 5 as
(02 4+ 8%)w = —8,0,v — O 1. (8)

We have used the continuity equation 8,u + Oyv + 8, w = 0 and the definition of
the wall-normal vorticity = 3,u — 9;w to have (8), where u is the streamwise dis-
turbance velocity. Equations (6) and (7) are supplemented by boundary conditions

v=0wv=0 =0

at y =0, 2.
In the following, we shall seek solutions to a system of equations (6), (7), and (8)
in the normal-mode form

eia(z—ct)

v = Re [9(y, z) , (9)
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1 =Re[i(y,2) €=, (10)
w = Re [ti)(y,z) ei"(z_d)] , (11)

where « stands for the streamwise wavenumber and ¢ the complex phase velocity.
The growth rate of the disturbance is given by alm(c).

We anticipate periodic solutions in the spanwise direction (Floquet theory). Two
fundamental modes are considered, i.e. the sinuous mode

=Y 6a(y) sin(ny2), A=) im(y) cos(nyz), =) da(y) cos(ny2),
n=1 n=0 n=0
(12)

and the varicose mode

o o] o0 oo
5= () cos(nyz), A=) in(y)sin(nyz), b=} ba(y) sin(ny2),
n=0 n=1 n=1

(13)
which are treated separately except for the case where both modes have the same
eigenvalue c, since the anti-symmetric and the symmetric modes can be decoupled
in (6), (7), and (8).

In the numerical solution of the eigenvalue problem, the infinite series in (12)
and (13) are replaced by truncated series up to n = N, in the spanwise direction
z. We then apply a Galerkin method to Egs. (6) and (7) by using N, b-splines
of order 6 as expansion functions in the wall-normal direction y. We set N, =10
and N, = 40 to have convergence under 0.2% difference for N, and under 4%
difference for N,. More details about the discretization can be found in Jiménez
et al. (1998). The evaluation of the involved integrals leads to a large, coupled
system of algebraic equations, AZ = cB&, which is of order N, x (2N, + 1), where
& is the solution vector in spline space and contains the coefficients of the wall-
normal velocity and vorticity for each spanwise mode and each discrete wall-normal
location. The algebraic eigenvalue problem was solved by using standard library
routines (e.g. LAPACK or EISPACK). We have removed spurious eigenvalues that
might be caused by the boundary treatment through the tau method before seeking
the most unstable (or least stable) eigenvalue and eigenvector.

2.9 Neutral curves

Figure 2 shows the projection on (7y, AU)-plane of the lower bound of the neutral
surface in (7, AU, a)-space. Open and closed circles represent the sinuous and the
varicose modes, respectively. The streaky flow should be unstable above the neutral
curve around the critical streamwise wavenumber a.. Note that the corresponding
spanwise wavenumber of 100 wall units is located at y/Re, = 0.06 in this figure.
The critical streak amplitude AU, seems to have a finite value (~ 1.7) as vy — 0
both for the sinuous modes and for the varicose modes.

In the case of the sinuous modes, AU, increases abruptly at v/Re, < 0.01 and
takes a maximum around v/Re, = 0.03. From there AU, decreases with increasing
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FIGURE 2. Trace of the neutral curve on (v, AU)-plane. Open circles represent
the sinuous mode and closed circles represent the varicose mode. The dotted vertical
line indicates v/Re, = 0.06, on which the wall-normal shear and the spanwise shear
due to streaks are comparable. The dashed curve denotes the contour of a constant
amplitude yAU/Re, = 0.12 of the wall-normal vorticity, on which the mean shear
at y = % is comparable to the spanwise shear of streaks. Three crosses represent

modes I, I, and III in Fig. 4.

7. In general, the actual value of the growth rate alm(c) (not shown here) is
increased when v as well as AU are increased because they are related to the
intensity of the shear layer generated by the streaks. For large v, however, the effect
of viscosity progressively stabilizes the flow. In the case of a two-dimensional wake,
the critical Reynolds number is given by Re. &~ 5, and in our case it is estimated
as Re. = 2nRe,(AU/v) (= 5). This estimate tells us that the stabilization due to
the viscosity becomes important only for relatively large v (v/Re, ~ 1.3AU).

At v/Re, = 0.06, i.e. 100 wall-unit wavelength, the instability requires that
AU > 3.44 for the streamwise velocity and so yAU/Re, = 0.20 for the wall-
normal vorticity. If we take into consideration that the RMS value of the streamwise
fluctuation velocity (and the wall-normal vorticity) attains the maximum of about
2.7u, (and 0.2u?/v) in the near-wall region, then the above requirements for the
instability are expected to be satisfied in a turbulent channel flow.

In the case of the varicose modes, on the other hand, AU, increases abruptly with
increasing < so that a stable region is extended to almost all the parameter plane
in Fig. 2.

This significant difference of the instability between the sinuous (bending) and
the varicose modes could explain, at least for low Re,, the fact that the actually
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FIGURE 3. Plot of the critical streamwise wavenumber a. against v.

observed streak instability involves the bending motion of streaks in the spanwise
direction (see Hamilton, Kim & Waleffe 1995; Schoppa & Hussain 1997; Jiménez &
Pinelli 1998).

Figure 3 shows the critical streamwise wavenumber a. against the spanwise
wavenumber v for the sinuous modes. For v/Re, < 0.01, a. is independent of
+, taking a constant value of a./Re, = 0.013. At v/Re, > 0.01, a. jumps down
and gradually increases with increasing v. For y/Re. = 0.06, i.e. 100 wall-unit
wavelength, the streamwise wavenumber has a value of a./Re, = 0.012, which cor-
responds to 500 wall-unit wavelength. This wavelength is consistent with that of the
streak bending often observed in a turbulent channel flow. a kinks at v/Re, = 0.12,
and then a. increases nearly linearly with 4. This jump and kink of a. implies
that there are different instability mechanisms in three ranges: v/Re, < 0.01,
0.01 < y/Re, < 0.12, and v/Re. > 0.12. We can now see the corresponding
dependence of AU, on ¥ in each range of v in Fig. 2.

In the present configuration, streaks (the second term in (1)) have the width
27h/~ and the height 0.6k within which the (dimensionless) streak velocity exceeds
0.01AU. If v/Re, = 0.06, then the width is comparable to the height. Two time
scales based on shearing motion of streaks across the spanwise and the wall-normal
directions are also comparable at v/Re, = 0.06 since they should be estimated as
each length scale divided by AUu,. On the other hand, the mean flow part Up(y)
in (1) has the velocity gradient of 0.12Re,u,/h at y = ¢, i.e. 30 wall units, where
the streak velocity and vorticity attain a maximum. Thus, at least in the vicinity
of this maximum, the time scale of shearing motion of streaks across the spanwise
direction is comparable to that of the mean shear if YAU/Re, = 0.12.

In Fig. 2, we have shown these relations, v/Re, = 0.06 and yAU/Re, = 0.12,
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respectively by the dotted line and the dashed curve. It turns out that in the case
of the instability at v/Re, < 0.01, the width of streaks is larger than the height
and also the spanwise shear of streaks is weaker than the wall-normal shear and
the mean shear. Because a. is independent of v for y/Re, < 0.01 as shown in
Fig. 3, the spanwise shear actually does not affect the instability. In the case of the
instability at y/Re, > 0.12, on the other hand, the height of streaks is larger than
the width, and also the spanwise shear of streaks is stronger than the wall-normal
shear and the mean shear. At 0.01 < 4/Re, < 0.12, where the typical streak
spacing v/Re, = 0.06, i.e. 100 wall units, is located, the streak width and height
as well as the streak wall-normal and spanwise shear and the mean shear are nearly
comparable.

Reddy et al. (1998) examined numerically streak instability in the simplified
model for a plane Couette flow and showed that mean shear has the stabilizing
effect on the instability (see also Waleffe 1997). Baggett (1996) argued that the
spanwise shear by streaks exceeds mean shear leading to the instability of streaks.

2.4 Bigenmodes

In this subsection, we shall discuss the structures of the unstable sinuous eigen-
modes near the neutral surface in order to distinguish the effects of the above-
mentioned different shear components on the instability.

Figure 4 shows the iso-surface of the streamwise disturbance vorticity of three
unstable eigenmodes for (a) AU = 3.0, 7/Re, = 0.005, a/Re, = 0.013; (b) AU =
4.0, v/Re, = 0.06, a/Re, = 0.012; and (c) AU = 4.0, v/Re, = 0.15, a/Re, =
0.063 (see Fig. 1 for contour plots of the corresponding base flows). The value of the
iso-surfaces is +4w’, where w' denotes the RMS value of the disturbance vorticity
vector. The light gray and the dark gray iso-surfaces indicate the positive and
the negative vorticity, respectively. Hereafter, the eigenmodes (a), (b), and (c) in
Fig. 4 are referred to as mode I, mode II, and mode III, respectively. Modes I, II,
and III have growth rates of alm(c) = 0.027, 0.60, and 5.2 and propagate in the
streamwise direction at phase velocities of Re(c) = 17.4, 13.6, and 14.2, respectively.
For all modes I, II, and III, the magnitude of the wall-normal vorticity is quite
small compared to that of the other components. For mode I, the streamwise and
the spanwise vorticity are comparable, while for modes II and III, the streamwise
vorticity is dominant. The trace of critical points (thin curves), at which the base
flow velocity is equal to Re(c), and of inflection points (thick curves) is shown for
modes I, I, and III in Fig. 5. In this figure inflection points are defined as a point
at which 82U = 0, where n is taken to be normal to iso-velocity lines (see Fig. 1)
of the base flow on (y, z)-plane.

In Fig. 4, it can be seen that the three eigenmodes have strikingly different struc-
tures. In the case of mode I, the streamwise vorticity is highly localized above the
high-speed streak (along the edge of the periodic box). It can be found in Fig. 5a
that the critical points nearly coincide with the (upper) inflection points only above
the high-speed streak. In this case the spanwise shear of the base flow is weak and
inactive (see §2.3 and Fig. 2). Therefore, the instability should be characterized by
the three-dimensional instability of a roughly two-dimensional wall jet.
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FIGURE 4. Iso-surface of the streamwise disturbance vorticity for unstable sinuous
eigenmodes. (a) AU = 3.0, v = 0.9, a = 2.4 (mode I); (b) AU = 4.0, v = 108,
a = 2.1 (mode II); and (c) AU = 4.0, v = 27.0, a = 11.4 (mode III). The value
of iso-surfaces is +4w', where w' denotes the RMS value of the vorticity vector.
The light and dark gray surfaces represent the positive and the negative vorticity.
The flow is from the lower left to the upper right, and the low-speed (high-speed)

streak is located along the center (edge) of the periodic box. See Fig. 1 for the
corresponding base flows.
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FIGURE 5. Trace of critical points and of inflection points on (y, z)-plane. (a)
AU = 3.0, v = 0.9 (mode I); (b) AU = 4.0, v = 10.8 (mode II); and (c) AU = 4.0,
¥ = 27.0 (mode III). The thin curves represent a critical point. The phase velocity
of disturbances is Re(c) = 17.4 for (a), Re(c) = 13.6 for (b), and Re(c) = 14.2 for
(c). The thick curves represent a inflection point of the base flows (a), (b), and (c)
in Fig. 1. Only half the height of the channel is shown in (b) and (c).

In the case of mode II, the streamwise vorticity takes an elongated ribbon-like
form in the streamwise direction (Fig. 4b). The ribbon-like structures are located on
both the high-speed streak and the low-speed streak (along the center of the periodic
box). They are inclined in the streamwise direction from the wall-normal direction.
In the case of mode III, on the other hand, the structures of the streamwise vorticity
are inclined in the streamwise direction from the spanwise direction rather than from
the wall-normal direction (Fig 4c). Structures of the same sign above the low- and
high-speed streaks are linked via the thin ‘arms’ such that they appear v-shaped.
This difference in the inclination direction between modes II and III could be related
to the difference in the effective shear. In the case of mode III, the spanwise shear
of streaks is strongest (see §2.3 and Fig. 2), so that the shearing motion across
the spanwise direction could tilt eigenstructures towards the streamwise direction
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from the spanwise direction. In the case of mode II, the shearing motion across the
wall-normal direction is considered to be effective.

Since for both modes II and III the critical points nearly coincide with the in-
flection points on the flanks of the low-speed streak (Fig. &b and c), the origin of
the instability for both modes is considered to be similar to a wake instability as
pointed out by Waleffe (1995, 1997) and Waleffe & Kim (1997).

In the next subsection, we examine the production of the streamwise vorticity in
order to further understand the difference between modes II and III.

2.5 Production of streamwise vorticity

First, we consider the equation for the unstable modal streamwise vorticity as

(U —-c)@; = - U +00.U, (14)
or equivalently
. (U — Re(c)) . _ L w .0
Wy + 1———————Im(c) z = l——Im(c)ayU + 1——Im(c) o. U, (15)

where &, (y, z) is related to the streamwise vorticity w, by w, = Re [G)Iei“(’_Ct)],
and we have neglected the viscous term. The right-hand side of (14) (or (15)) is
responsible for the production of the streamwise vorticity through the vortex tilting.
The first term in (14) (or (15)) comes from the tilting of the wall-normal disturbance
vorticity by the wall-normal shear of the base flow while the second is related to the
tilting of the spanwise disturbance vorticity by the spanwise shear. Note that the
tilting effects of the base flow vorticity by the disturbance have disappeared from
(14) (and so (15)) due to cancellation. If we estimate the order of the first and
second terms for mode I and mode III, then we find that in the case of mode II
the first term is significant while in the case of mode III the second is significant.
The contour plots of &, and of the significant production term are shown for mode
II and mode III in Figs. 6 and 7, respectively (only the real parts are shown). In
these figures, the flow condition of (a) corresponds to (b) in Fig. 4, and that of (b)
corresponds to (c¢) in Fig. 4. In Fig. 7a the first term in (15) is shown, while in
Fig. 7b the second term in (15) is shown.

As described in §2.4, in the case of mode II the ribbon-like structures of the
positive and negative streamwise vorticity are inclined in the streamwise direction
so that the positive and the negative structures are stacked alternately on top of
low- and high-speed streaks (see Fig. 6a). This typical distribution of the positive
and negative vorticity coincides well with that of the significant production term
(Fig. 7a). In their direct numerical simulation, Sendstad & Moin (1992) found
that the same production term, —(8,w)(dyu), is dominant for the generation of the
streamwise vorticity in near-wall turbulence.

For mode II, if we estimate the order of each component of the disturbance ve-
locity, it turns out that the spanwise disturbance velocity is much larger than the
wall-normal one, especially on the low- and high-speed streaks (the streamwise com-
ponent is very small). The strong spanwise velocity could be induced by spanwise
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(b)

FIGURE 6. Eigenmode &, for the streamwise vorticity. (a) AU = 4.0, v = 10.8,
a = 2.1 (mode II); and (b) AU = 4.0, v = 27.0, a = 11.4 (mode III). Contour
increment is w'. Negative contours are dotted. Only the real parts of &, are shown.
In (b) one of the minima, which correspond to the ‘arms’ in Fig. 4c, is indicated by
the arrow.

(a) | (b) [——

FIGURE 7. Significant production terms for the streamwise vorticity. (a) —id(8,U)/
Im(c) is shown for AU = 4.0, v = 10.8, a = 2.1 (mode II). (b) i5(8,U)/Im(c) is
shown for AU = 4.0, v = 27.0, @ = 11.4 (mode III). Contour increment is 3w’, and
negative contours are dotted. Only the real parts are shown.
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FIGURE 8. Contour plot of the spanwise disturbance velocity on (z,y)-plane for
mode II. The slice plane is located at z = 0.29, i.e. the centerline of the low-speed
streak. Contour increment is v, where v’ denotes the RMS value of the velocity
vector. Negative contours are dotted.

FIGURE 9. Contour plot of the wall-normal disturbance velocity on (z, z)-plane
for mode III. The slice plane is located at y = %, i.e. 30 wall units, where the streak
velocity and vorticity attain a maximum. Contour increment is v', where v' denotes
the RMS value of the velocity vector. Negative contours are dotted.

bending instability of the streaks similar to a wake-like instability. The eigenmode
for the spanwise velocity is inclined from the wall-normal direction towards the
streamwise direction under the action of the shearing motion across the wall-normal
direction (Fig. 8). The inclined eigenmode for the spanwise velocity directly induces
streamwise vorticity as well as wall normal vorticity (see Fig. 10a). The induced
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(a) (b)

FIGURE 10. Proposed mechanisms of the streamwise vorticity generation for
(a) mode II and (b) mode III. Solid lines conceptually show null contours of the
disturbance velocity normal to the figure planes, and symbols ® and ® indicate the
signs of the velocity component, i.e. coming out of and going in the planes. Thick
double arrows denote the induced streamwise vorticity. Thin double arrows denote
the induced wall-normal (or spanwise) vorticity in (a) (or in (b)). Thick arrows
represent the production of the streamwise vorticity by the vorticity tilting towards
the streamwise direction. The dotted-dashed lines in (b) are the centerlines of the
low- and high-speed streaks.

wall-normal vorticity is tilted towards the streamwise direction, which then leads
to new production of streamwise vorticity. The generated streamwise vorticity, in
turn, enhances the spanwise bending of streaks, i.e. the spanwise velocity.

In the case of mode III, on the other hand, one can identify strong localized
minima (one of which is indicated by the arrow) of streamwise vorticity situated in
between the low- and high-speed streaks in Fig. 6b, which correspond to the ‘arms’
visible in Fig. 4c. The high vorticity of these minima is apparently produced by the
second production term in (15) as the location of the strong minima of production
coincides with that of the ‘arms’ (compare Figs. 7b and 6b).

For mode III, the shearing motion across the spanwise direction is dominant
especially between the low- and high-speed streaks. If we examine the order of the
disturbance velocity, then we find that the wall-normal velocity much exceeds the
spanwise one between the low- and high-speed streaks (the streamwise component is
again very small). The eigenmode for the wall-normal velocity is inclined towards
the streamwise direction from the spanwise direction by the action of the shear
between the low- and high-speed streaks (Fig. 9). The inclined eigenmode for the
wall-normal velocity directly induces streamwise vorticity and secondarily produces
it through vortex tilting in a manner similar to that found in the case of mode II
but with the production taking place essentially in planes parallel to the wall (see
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Fig. 10b).

3. Summary and future plans

In this report, we have presented three different instability modes in the base
flow composed of a turbulent-channel-type mean flow andsuperimposedstreaks at
Re, = 180. For v/Re, < 0.01, a wall-jet-like instability occurs, and the critical ve-
locity amplitude of streaks is around AU, = 1.7. In the range 0.01 < v/Re, < 0.12,
into which falls the wavelength of 100 wall-units, the critical amplitude is around
AU, = 3. In this case, unstable eigenmodes take a form that is inclined towards
the streamwise direction from the wall-normal direction, and they directly induce
streamwise vorticity. In addition, the streamwise vorticity is secondarily produced
on low- and high-speed streaks principally through tilting of the wall-normal dis-
turbance vorticity by the base flow shear across the wall-normal direction. For
v/Re, > 0.12, on the other hand, the shearing motion between low- and high-speed
streaks is dominant so that eigenmodes are oriented in the spanwise direction (with
an inclination towards the streamwise direction) rather than in the wall-normal di-
rection. In this case, therefore, the streamwise vorticity is produced between low-
and high-speed streaks principally through tilting of the spanwise disturbance vor-
ticity by the base flow shear across the spanwise direction in addition to the direct
induction of the streamwise vorticity by inclined eigenmodes. In these latter two
cases, the instability is considered to be similar to a wake instability. In these cases,
however, the streamwise vorticity is dominant, and it is induced directly through
the instability. No two-dimensional instability mechanism can be applied to these
two unstable modes. The underlying three-dimensional mechanism is expected to
be interpreted directly in terms of the streamwise vorticity.

We are now pursuing an analytical approach to explain the mechanism of the
streak instability and the generation of the streamwise vorticity. We are also plan-
ning to investigate the effects of a change of boundary conditions on the streak
instability in order to get useful information for possible control strategies of near-
wall turbulence.
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An implementation of the v2-f model
with application to transonic flows

By Georgi Kalitzin

1. Motivation and objectives

This report describes the implementation of the v2-f model in CFL3D, a code
which solves the time-dependent 3-D compressible Reynolds-averaged Navier-Stokes
equations using multi-block structured grids.

The turbulence transport equations are solved implicitly with an implicit treat-
ment of the boundary conditions. The large amount of computer memory required
for inversion of the matrices resulting from the implicit operator with, for example,
GMRES is still a major constraint for computations of 3-D flow around complex
geometries. A three-factored Approximate Factorization scheme, which factorizes
the 3-D matrix into three 1-D matrices, minimizes the memory required. The stiff-
ness of the € and f boundary conditions require that the source terms and boundary
conditions are treated implicitly in the factorized matrix for grid lines normal to the
wall. This, however, leads to severe difficulties in the computation of, for example,
wing-body junctions, where grid lines of two coordinate directions may be normal
to the walls.

A two-factored Approximate Factorization scheme, which factorizes the 3-D ma-
trix into a 2-D and a 1-D matrix, improves the robustness and applicability of the
model. The factorization errors scale with At? in this scheme in contrast to At® in
the three-factored scheme for 3-D flows. GMRES is used for the inversion of the
2-D matrix, and a direct solver is used for the inversion of the 1-D matrix.

The correctness of the implementation of the v?-f model in CFL3D has been
tested on several cases: flow over a flat plate, channel flow, and by-pass transition.
Results for the channel flow have been included in this report.

The performance of each numerical scheme has been tested on the computation
of transonic flow around the ONERA M6 wing. This 3-D single block test case
presented no major numerical problems with any of these schemes, and it allows
a quick evaluation of the CPU time and memory requirements of the different
numerical methods. The pressure distributions computed on selected wing cuts are
compared with experimental data. Comparisons to computations with the Spalart-
Allmaras model provide an overall view on the relative cost of computation for the
v2- f model.

2. Accomplishments

2.1 Basic numerical method

CFL3D, a code developed at NASA (Krist et al. 1997), solves the time-dependent
thin-layer Reynolds-averaged Navier Stokes equations using multi-block structured
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grids. A semi-discrete finite-volume approach is used for the spatial discretization.
The convective and diffusion terms are discretized with a third-order upwind and a
central difference stencil, respectively. The code uses flux-difference splitting based
on the Roe-scheme with a smooth flux limiter. Time advancement is implicit.
A three-factored Approximate Factorization scheme (Beam and Warming 1978) is
used to invert the matrices, resulting from the implicit operator. The steady-state
computations have been performed by marching in time from an initial guess. To
accelerate convergence, local timestepping is used for all variables both mean flow
and turbulence, while multigrid is used only for the mean flow. This code is a state-
of-the art flow solver which is widely used at NASA for research and in industry for
design purposes.

2.2 Durbin’s v?-f turbulence model

A short description of the model’s equations is given to facilitate the description
of its implementation in CFL3D. While new versions of the model (Lien et al. 1996,
1998) have been developed to overcome some of the numerical problems mainly con-
nected with the f-boundary condition, we consider in this report only the original
version of the model. For high Reynolds number flows in particular the original
version predicts consistently better skin friction distributions.

In essence the v?-f model introduced by Durbin (1995) extends the standard k-e
model to low-Reynolds number flow regions. This is realized by modifying the eddy-
viscosity formulation and solving two additional partial differential equations: an
equation describing the transport of the turbulent intensity normal to the stream-
lines v? and an elliptic relaxation equation for f. The latter models the effect of
the pressure-strain term.

Consistent with the non-dimensionalization used in the code

k oo —5 VP v i 5 U i fa
k_~2 ’6_‘77” ~2,f___f~_2°°_, _T/L—, =’L,U='~_,$=~_,t=703
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the model’s equations for compressible flow are:
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The time and length scales are computed as
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where S;; = 0.5(8u;/dz; + Ou;/0z;) represents the strain tensor. The upper bound
for the time and length scales is derived from realizability constraints (Durbin 1996).
The eddy-viscosity is given by

Ht = C,,v_zT,
and the model constants are:
C, =019, o =1, 0 = 1.3, Cq = 1.4(1 + 0.045 k/v?), Cea = 1.9,

C, =14, C; =03, C, =0.3, Cp =70, a = 0.6.

The wall boundary conditions for € and f are derived from the near wall asymptotic
behavior of the k and v? equations forcing k ~ y? and v? ~ y* respectively, as y — 0.

Mm)2 vk o (Moo)4 20020} 5)
w =

kw=0,v2=0,€=—==]) —, ==
Y wo (Re 2 Re h

The indices w and 1 denote respectively the wall and first point above the wall.

2.8 Numerical solution of the turbulence equations

CFL3D uses a segregated approach for the solution of the mean flow and turbu-
lence equations. This facilitates the implementation of the v2-f model such that
the turbulence model can be solved in a single subroutine. Only the boundary
conditions are set up elsewhere.

The k, € and v2, f equations are solved in a pairwise coupled manor similarly to
the implementation in INS2D (Durbin 1995). An equation-by-equation approach
used, for example, in STREAM (Lien et al. 1996) does not allow an implicit coupled
treatment of the boundary conditions. This has been observed to cause convergence
problems and may require the use of smaller time steps. In this report we consider
only the implementation of the v? and f equations. The k and e equations are
discretized and solved in a similar fashion. Equations (3) and (4) written for an
implicit scheme in delta form are:

1 Re \ ¢ — Re
(I('&‘ + (J\_/I;) E) + 6qAn + 0¢Ag + 5(A<> Av? — (]\—J;—) kAf=R (6)
with
—n Re n Re \ e—n
R=—(8qAy+8cAc + 8 A" + (E.f) kf" - (Moo) e
and
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with
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Here 6¢ A¢ and 6¢ B¢ (in analogy 7n and () define the. expressions
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The variables k, €, s, L, T, p, and U are set at their previously computed values and
thus treated as constant in time. The time update is defined as

—_ +1 JE—
AV =0T —pT" | Af =t gn

As mentioned, the wall boundary conditions are treated implicitly. As usual in a
cell centered scheme, two rows of halo, or ghost, cells are added to the computational
domain. The values in the first row of halo cells are denoted by subscript 0. The
values at wall boundaries are linearly extrapolated from the interior. In delta form
the equations are:

Ak‘o = —Akl, A‘Ug = —A’Uf, AEO = 2A€w1‘ - Aé], Afo = 2Afw1‘ - Af] (8)
It has been found that particularly at the beginning of a calculation very small time
steps are required to prevent k and v? from becoming negative, which often leads
to divergence of the solutlon Particularly the value of € at the wall is initially very
large due to the factor 1/y% in the boundary condition. The wall distance of the
first cell center above the wall y; is usually of the order of 108 times the airfoils
cord. Keeping the dissipation of the turbulent kinetic energy e small at the wall
during the first iterations ensures a rapid growth of the turbulent kinetic energy
and thus of the turbulent boundary layer. One way to relax the € and f boundary
conditions can be achieved by multiplying their wall values by a factor which is
dependent on the iteration counter n
__ min(n,n,)
r = —T
Here n, is the iteration number up to which the boundary condition is modified.
For most applications it has been set to 100.

The convective terms in the k, €, and v2 transport equations have been discretized
as first-order upwind differences. This increases robustness, and usually this is
sufficiently accurate for the turbulence equations since the source terms mainly
balance the diffusion terms in wall bounded flows.

The time and length scales require an upper bound only in fully turbulent calcula-
tions with stagnation regions to suppress the spurious production of eddy-viscosity
(Durbin 1996). However, the strain magnitude S is particularly large close to the
wall at the initial iterations. This oversuppresses the value of the eddy-viscosity,
hindering the development of a turbulent boundary layer. Therefore fully turbulent
flow has been computed without an upper limit on the time and length scales for
the first 100 or so iterations.
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2.4 Transition modeling

Particularly for high lift computations it can be very important to model transi-
tion. Transition is modeled in a crude way by switching off the production source
terms in the laminar part of the flow upstream of an a priorly fixed transition line.
It has been found that solely switching off the terms which include Py upstream of
transition leads often to numerical difficulties. Large residuals caused by negative
values of the turbulent variables prevent convergence in this region. Limiting the
lower value of the turbulent variables with the free-stream values and additionally
setting f to 0 at the walls upstream of transition seems to eliminate this problem.

The stagnation point anomaly usually does not appear for airfoil computations
with a priorly fixed transition. No upper bounds on the time and length scales are
therefore needed.

2.5 Approzimate Factorization

In the 2-D flow solver INS2D, the matrices on the left-hand side in (6) and (7)
are ILU-preconditioned and subsequently solved with the Generalized Minimum
Residual (GMRES) (Saad 1986) algorithm. For 3-D computations the non-zero
band width in the sparse matrices increases significantly with the third dimension.
The inversion of these matrices with GMRES is not practical in the computation
of industrial lows due to the large amount of memory required.

A three-factored Approximate Factorization scheme, as used for the mean flow,
factorizes our system of Eqgs. (6) and (7) into three 1-D problems:

Re \ € — Re
) = 2 | — L
(I(l + (Moo) kAt) + 6,,A,,At> Av (Moo) kAtAf' = RAt (9)
(I+6,B,0)Af' = Qa
along 7 grid lines,
(I + 6 AcADAD? = AT (10)
(I +8¢Bea)Af" = Af'
along ¢ grid lines, and
(I + 6. AA)AE " = AT (11)

(I+6.Ba)Af" = Af"

along ¢ grid lines. A modification of the elliptic relaxation equation is required
to factorize the matrices. Here the term Af on the left-hand side in (7) has been
substituted with an unsteady like term Af/a.

The error of this scheme can be estimated by substituting A_v—zu, Av_z', Af" and
Af' with the expressions (10) and (11):

Re

R
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The terms underlined are error terms which modify the original Eqgs. (6) and (7).
They are, however, scaled by powers of the time step At and the variable a. Small
values of & and At minimize the influence of these error terms. On the other hand,
a small & modifies the f equation significantly, which is represented exactly in the
non-underlined part of Eq. (13), setting a = 1. A local time step is used for steady
state computations. The time step At for transonic flow around the RAE 2822
airfoil (Cook et al. 1979) is, for example, of the order of 10~ near the wall, 0.1 at
the edge of the boundary layer, and 10 in the free-stream. A constant value of o
between 0.1 and 0.01 has been found to work quite well. Note that at convergence
Eq. (13) becomes

Q=0
and the exact f-equation is solved, irrespective of a.

The matrices on the left-hand side of (9), (10), and (11) are tridiagonal 2 x 2
block matrices. A direct solver taken from a 1-D channel code is used to invert
these matrices. Sub-iterations for the turbulence model could be used to correct
the approximation errors (Steinthorsen et al. 1993). However, the test cases run so
far have been computed without the use of sub-iterations.

It should be noted that the source terms are treated implicitly only with the first
factorized matrix (cf. Eq. (9)). The " and " time updates in the first cell above the
wall do not ’see’ the wall and are treated in the same way as in the internal cells.
The boundary condition is thus applied only to the first update ' and not to the
final update . This allows only certain grid lines, here the n-lines, to be normal
to a wall, severely limiting the usability of the three-factored scheme. Nevertheless,
several airfoil computations and the 3-D ONERA M6 wing computation described
later in this report have been successfully carried out with this approach.

Furthermore, it should be noted that only a 1-D array with twice the largest grid
dimension (’twice’ since two equations are solved simultaneously) is required for
the factorization procedure described. However, consistent with other turbulence
models implemented in CFL3D, 2-D arrays have been employed, improving the
vectorization of the direct solver and reducing the number of operations. These 2-D
arrays are first filled in the £ — n plane with the 1-D operator in 7 direction, then
with the 1-D operator in £ direction, and finally in the ¢ — ¢ plane with the 1-D
operator in ( direction.
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A two-factored Approximate Factorization scheme overcomes some of the diffi-
culties described. Instead of factorizing the original 3-D system of equations into
three 1-D system of equations, the two-factored scheme solves a 2-D and 1-D set of
equations:

Re \ €, .. —t Re ,
I+ { =) —At) + 8,4, At + 8 A At ) Av? — | — | kAtAf = RAL (14)
Ms/) k Ms

(I 4+ éyBpa + 6¢Bea)Af' = Qo

in the £ — n plane and
—u —
(I + 6(AcAt)Av2 = Av? (15)

(I+ 5<Bga)Af” = Af'

along ¢ grid lines. Practically only the diagonals of the operators bpAy, 6¢Ag and
64 By, 6¢Be have to be added, allowing the use of the same 2-D arrays. Solving the
resulting 2-D matrix with GMRES the implicit source terms are included in the n
direction as well as in the £ direction. These can now be normal to the walls.

The approximation errors of this scheme follow by substituting Av? and f' with
the expressions of (15)

10+ [ BE) EAL) + (6 Ay + beAc + 8cA)AL) AT — Be \ patas (16)
M/ k Moo
RC € 2 ——2-Il Re 1"
(I (37— ) 7+ 00An +6eAdcAcAP v — { = | RécBeAtaAfT = RAT

(I + 6,,B,,a + 553501 + 6CB(a)Af” + (6,,B,, + 6535)6<B(Afl'02 = Qa (17)

Again we have underlined the error terms. The number of these terms is substan-
tially smaller than when using the three-factored scheme. Additionally, these terms
scale with At? (or with a?) as opposed to the three-factored scheme, the error of
which scale with At3 (or o). Often larger time steps can be used. For some flows
such as the transonic flow around the RAE 2822 airfoil under the flow conditions
of test case 10 (Lien et al. 1998), the computation with the v2- f model and the
three-factored scheme did not converge. It had to be computed using GMRES.

The memory requirements for the three-factored and two-factored scheme de-
scribed are almost the same in CFL3D. They are far smaller than for a procedure
in which the original 3-D system of equations is inverted with GMRES.

Currently, all memory additionally required for GMRES is provided locally. Some
of the computer operations could be optimized by reordering the coding. The scaling
of the f equation with Re/My, affects the eigenvalues of the implicit matrices. This
influences the number of GMRES sub-iterations required as well as the convergence
tolerance used. 10 GMRES subiterations with a convergence tolerance of 107° is
currently used and may still be optimized in future research.
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FIGURE 1. Profiles for channel flow, Re,, = 395; : v2- f model and CFL3D,

~--- 0% f model and 1-D channel code, o : DNS.
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FIGURE 2. Surface mesh and C-O mesh structure for ONERA M6 wing.

2.6 Channel flow

Channel flow has been computed to validate the correctness of the v*- f implemen-
tation in CFL3D. DNS data exists for incompressible flow for Re,, = 395 based
on the wall shear velocity u, and the channel half-width A. A Mach number of
M = 0.2 has been specified for the computation with CFL3D.

Periodic boundary conditions as for incompressible channel flow can not be spec-
ified since the friction at the wall leads to an entropy production which increases
the flow temperature. A very long channel h = 1m,! = 50m (32 x 96 cells) has
therefore been computed, avoiding code modifications. The height of the first cell
above the wall is 5 x 1072, corresponding to a cell-centered value of y* = 1.

The pressure is extrapolated and the other flow parameters are specified at the
inflow of the channel. The pressure at the outflow is obtained over the total en-
thalpy, which remains constant in the flow for adiabatic walls. The outflow data 1s
then copied to the inflow after achieving convergence. This procedure is repeated
until periodicity is obtained with a good approximation, indicating fully developed
channel flow. A Reynolds number of about Re = 7500, based on the mean flow
velocity and the channel half-width h, has been found iteratively to correspond to
the correct wall shear velocity.

The convergence plots are given in Fig. 1, which shows the restarted solutions. In
the same figure profiles of the velocity and turbulent quantities are plotted against
the wall distance y*. The data computed with CFL3D corresponds quite well with
data computed with an incompressible 1-D channel code.

2.7 ONERA M6 wing.

Flow over the ONERA M6 wing (Schmidt et al. 1970) has been computed for the
flow conditions: Mach number M = 0.8395, Reynolds number Re, = 11.72 x 10°
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FIGURE 3. Pressure coefficient at cuts for ONERA M6 wing;
----: Spalart-Allmaras, o : Experiment.

: v2-f model,
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FIGURE 4. Pressure coefficient distribution on ONERA M6 wing (cell-centered

data), v3-f model.
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based on the mean chord of ¢ = 0.64607 and incidence a = 3.06°. This is a swept
wing with a root chord of about ¢00: = 0.8m and a span of about b = 1.2m. The
airfoil profile is symmetric.

The computational grid has been generated with the HYPGEN software package
provided by P. Buning (see Chan et al. 1993). The single block C-O mesh consists
of 665 856 cells (696 969 nodes) with 272 cells in the streamwise direction, 68 normal
to the wall, and 36 in the spanwise direction. The inflow is located about 15 chord
lengths into the far field. The surface mesh on the wing is 100 x 36 cells on both
the upper and lower surfaces. A plan view of the surface mesh is shown together
with the general C-O mesh structure in Fig. 2.

A comparison of pressure distributions computed with the v?-f and Spalart-
Allmaras model with experimental data at selected wing cuts is shown in Fig. 3. The
corresponding pressure distribution on the upper wing surface and the location of
the cuts are shown in Fig. 4. Although a generally good agreement of the computed
and the experimental data can be observed, the pressure distribution at station
y/b = 0.80 shows both branches of the shock merging prematurely. The pressure
distribution on the wing depends more on the particular numerical scheme (i.e. the
flux limiter chosen) than the turbulence model used.

The plots in Fig. 5 show a similar convergence history for both models. All three
numerical schemes work well for the v2- f model for this test case. The computations
have been carried out with local time steps corresponding to a CFL number of 5.

The computational cost for 800 iterations on a CRAY C90 with the v2-f model
is about 3.1 CPU hours using 42.3 Mword memory with the three-factored scheme
and 4.9 hours using 43.6 Mword with the two-factored scheme, in which GMRES
has been used in a plane containing the wall normal and streamwise direction. For
the solution of the original 3-D problem with GMRES, the CPU time is 12.0 hours
using 126.0 Mword memory. For the Spalart-Allmaras model 2.3 CPU hours are
required with 38.2 Mword memory.

3. Summary and future plans

The present report describes the current implementation of the v2- f model in the
compressible 3-D flow solver CFL3D. Both an Approximate Factorization scheme
and the Generalized Minimum Residual algorithm are implemented for the solution
of the turbulence equations. The stiff boundary condition for € and f require that
both the source terms and the boundary conditions are treated implicitly in the wall
normal direction. This restricts the very fast and memory efficient three-factored
Approximate Factorization scheme to computations in which grid lines of the same
coordinate, for example 7, are normal to the wall. The two-factored scheme allows
grid lines of two coordinate directions to be normal to the wall using the same
memory requirements. This increases the applicability of the v%-f model in large
flow computations around complex geometries. While less efficient regarding the
CPU time needed per iteration, it often permits the use of larger time steps.

The report provides a comparison of a three-factored, a two-factored, and a GM-
RES solution of the original 3-D turbulence equations. The efficiency of each scheme
is demonstrated on the computation of transonic flow around the ONERA M6 wing.
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Although all three schemes perform similarly for this test case in terms of conver-
gence per iteration, they require different CPU time and computer memory. The
two-factored scheme requires 1.6 times the CPU time of the three factored scheme,
using about the same computer memory. The full GMRES solution requires about
2.9 times the amount of memory of both other schemes and 3.9 times the CPU time
of the three-factored scheme. However, as mentioned, the implementation of the
GMRES routines may not be optimal and can be improved further through future
work.

The Spalart- Allmaras model, which consists of one transport equation as opposed
to the v2- f’s four partial differential equations, requires 0.74 times the CPU time
and 0.90 times the computer memory of the v2-f computation with the three-
factored scheme.

An unsteady term has been added to the f-equation in order to use the Approxi-
mate Factorization scheme. Subiterations may be needed to minimize the influence
of this term in unsteady computations.

Computation of high-lift test cases are underway which depend significantly on
the turbulence model used. Here we concentrate on the computation of flow around
the three element trapezoidal wing-body currently investigated experimentally in
the wind tunnel at NASA Langley. A patched mesh consisting of about 8 million
grid points has been provided by the Subsonic Aerodynamics Branch at Langley
(Jones et al. 1998).

Computations of the two element NLR7301 airfoil (Van den Berg 1979) and the
McDonnell-Douglas slat-wing-flap airfoil (Valarezo et al. 1991), previously com-
puted with the INS2D code (Kalitzin 1997), with use of patched and chimera grids
is planned. In addition boundary conditions for the € and f equations in flow regions
such as the blunt trailing edge of an airfoil may require modifications.

As reported in the CTR Summer Program (Lien, et al. 1998), some of the
airfoil computations required the use of constant time steps for the integration of
the turbulence equations. Small unsteady oscillations in v? and f prevented the
solutions from converging using local time steps. This is another aspect for future
research.

It is also planned to have a closer look at the shock-boundary layer interaction
region, for example for the RAE 2822 test cases. The sonic line parallel to the wall
lies deep inside the boundary layer. As pointed out by Bradshaw (1998), the true
domain of dependence of a point just upstream of the shock wave is the upstream
Mach cone, which blends into the sonic line, plus the subsonic region near the wall.
The integration of the f-equation over the whole domain, including shock and the
region behind it, introduces errors in comparison to an integration of the f-equation
over the upstream-and-subsonic domain only. This research should estimate the
significance of this error.
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Heat transfer predictions in cavities

By A. Ooi, G. Iaccarino AND M. Behnia'

1. Motivations & objectives

Artificial roughness elements (ribs) introduced in flow passages is a popular
method of enhancing heat transfer in the cooling passage of turbine blades, heat
exchangers etc. It is essential to accurately predict the enhancement of heat transfer
generated by the roughness elements to ensure good design decisions. Experimen-
tal studies have been carried out by various investigators e.g. Han et al. (1978),
Han (1984), Han et al. (1985), Han (1988), Chyu & Wu (1989), Korotky & Taslim
(1998), and Rau et al. (1998). It has been found that the conventional k — € tur-
bulence models with wall functions do not accurately predict the data (Simoneau
1992) for this geometrical configuration. This is mainly because the flow field has
both separation and reattachment points, and it is well known that the k — e model
with wall functions leads to erroneous predictions for this situation. In order to
obtain better predictions, Liou et al. (1993) performed two-dimensional numerical
simulations using a k — e — A algebraic stress and heat flux model. Good agreement
with experimental data were obtained, but extension of the method to three dimen-
sions is computationally expensive and could lead to equations that are numerically
stiff (Gatski & Speziale 1993 and Speziale 1997).

Stephens & Shih (1995) used the k¥ — w model to compute three-dimensional
ribbed channel with heat transfer and compared their results with experimental
data of Chyu & Wu (1989). They achieved good qualitative but not quantitative
agreement. More recently, lacovides (1998) showed that two layer k — € with the
Wolfshtein (1969) one-equation near-wall model for k transport gives unsatisfactory
heat transfer predictions in rotating ribbed passages. Better results were obtained
by employing a low-Re version of a differential stress model. However, this model is
computationally expensive and only achieved marginal improvement in heat transfer
predictions.

The v? — f turbulence model was introduced by Durbin (1991) and has been
successfully used to predict heat transfer in attached boundary layers and channel
flows (Durbin 1993). This model was later used by Behnia et al. (1997) to pre-
dict heat transfer in an axisymmetric impinging jet. The impinging jet is a very
challenging test case because the applications of traditional turbulence models to
this flow configuration have been shown to result in poor agreement with available
experimental data. Computations using the v? — f model give better heat transfer
predictions in this axisymmetric two-dimensional environment. Here, the v? — f

1 Current address: Dept. of Mechanical and Manufacturing Engr., University of New South
Wales, NSW 3052, Australia
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turbulence model will be used in a three-dimensional domain to test its ability to
predict heat transfer in ribbed passages. We will compare results of the current
simulation with the experimental data of Rau et al. (1998).

Also of interest is the prediction of heat transfer in a geometry resembling the
clearance gap between the tip of an axial turbine blade tip and the adjacent sta-
tionary shroud. This problem is of great interest in the engineering community
because heat transfer at the blade tip can give rise to large temperature gradients,
which in turn causes durability problems. Booth et al. (1982) and Wadia & Booth
(1982) have investigated the aerodynamic characteristics of this narrow flow pas-
sage between the pressure and suction sides of the blade. Metzger et al. (1989)
have provided experimental heat transfer data for this configuration, and we will
compare the v? — f heat transfer predictions with this data.

2. Accomplishments

2.1 Turbulence models

Most of the results presented below are obtained using the v? — f turbulence
model. It is computationally more expensive than the conventional k — € model but
is relatively inexpensive compared to algebraic stress and full second moment closure
models. The equations for this model can be found in various publications (Behnia
1997, Lien & Durbin 1996) and will not be repeated here. The temperature field
is obtained by assuming a constant turbulent Prandtl number, Pr, = 0.9, relating
the eddy diffusivities of heat and momentum; i.e. the turbulent heat flux is simply
approximated as

Ve 39
(ulo> = _Pf‘t 8—:1::’
where 14 is the eddy viscosity and © is the mean temperature. As will be dis-
cussed later, this approximation is only valid for forced convection problems. More
complicated models for (u;6) are needed where buoyancy effects are significant.

To highlight the advantages of v? — f over the more commonly used k — € model,
similar numerical computations were also performed with a k — ¢ model. For these
simulations, the conventional k—e model matched to the low-Re k—! model proposed
by Wolfshtein (1969) is used. This wall-treatment is chosen because it is the default
2 layer model used in many commercial CFD packages.

2.2 Computational domain, parameters, and boundary conditions

Two different sets of computations will be considered in this paper. The first set
is the ribbed channel; the corresponding computational domain is shown in Fig. 1.
To minimize the number of grid points, symmetry of the mean flow is assumed
at the mid-channel. Numerical simulations were carried out with the ribs placed
on one wall (1s) or on two opposite walls (2s). For the 2s simulations, symmetric
boundary conditions were used on the top of the computational domain, and for
the 1s simulations, the no-slip condition is used. The flow is assumed to be fully
developed, hence the velocity field is periodic in the streamwise direction. For these
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FIGURE 1. Three-dimensional computational domain for ribbed passage simula-
tions.

—— Mean flow

direction

FIGURE 2. Two-dimensional computational domain for blade tip simulations.

simulations the rib height-to-channel hydraulic diameter ratio is fixed at e /Dy = 0.1,
where the hydraulic diameter, Dy, is defined to be

_ 2WH

W+ H

Channel width-to-height ratio (W/H) is unity. Simulations were carried out with
different pitch to rib-height ratios of

Dy,

p/e=16,9,12.

All Nusselt number distributions for the ribbed channel calculations presented here
are normalized with respect to the level obtained in a smooth circular tube (i.e.
Dittus-Boelter correlation)

Nug = 0.023Re**Pr*.
The Reynolds number is

_ Uputk Drp
7]

Re = 30,000
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Mean Flow Direction

FIGURE 3. Flow pattern on the symmetry plane of the computational domain.

where the bulk velocity, Upyik, is defined as

m
pA:

Upuik =

A, 1s the cross-sectional area of the passage. The molecular Prandtl number, Pr =
0.71, is kept constant for all simulations. For heat transfer calculations, a constant
heat flux is applied at the walls.

All results presented here are from simulations with 81(z) x 65(y) x 31(z) grid
points. To ensure that the results are independent of the grid, all simulations
were repeated with twice the number of grid points in each spatial direction. No
noticeable difference in the solutions were observed, hence the solutions presented
here are assumed to be grid independent.

The other problem considered is a model for the grooved turbine blade tip cross
section. This configuration is shown in Fig. 2. The mean flow field in the experi-
ments by Metzger et al. (1989) is essentially two-dimensional at Reynolds number

_ PUsurC
p

Re =1.5x 10*%,

The ratio of clearance height to cavity width, ¢/w, was fixed at 0.1 and two different
d/w=0.1,0.2

ratios were considered. Constant temperature boundary conditions are used for
all walls and the Prandtl number, Pr, is kept constant at 0.71. Nusselt number
distribution on the cavity floor will be compared with the experimental data of

Metzger et al. (1989).
2.3 Results and discussion (ribs)

Figure 3 shows the flow pattern on the symmetry plane of the computational
domain. The flow separates after going over the upstream rib creating a low pressure
region behind the rib. Further downstream, the flow reattaches and forms a short
recovery region downstream of the reattachment point. This flow then impinges
on the next rib, forming a small recirculating region in front of the downstream
rib. The flow pattern just described is difficult to model mainly because it contains
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FIGURE 4. Comparison of the streamwise velocity component, U, at y/e = 0.1
on the symmetry plane of the computational domain. This figure shows data from

a 1s simulation with p/e = 9. v? — f turbulence model, —-— k — ¢ 2 layer
model, o experimental data of Rau et al. (1998).

both separation and reattachment points. Parneix & Durbin (1996) have used the
v? — f model to accurately predict the reattachment point and the downstream
recovery region of a backstep flow. Analysis of the data here will determine if v? — f
can predict the short recovery region and the subsequent separation point before
the downstream rib. Figure 4 shows the streamwise velocity distribution close to
the floor (10% of the rib height) between the two ribs on the symmetry plane. As
can be seen, both the k — e and v? — f models accurately predict the separation
and reattachment points. The velocity maximum and minimum in the recovery
and reverse flow region are more accurately predicted by the v2 — f. The k — ¢
model predicts a more accurate minimum streamwise component of velocity in the
recirculating bubble just before the downstream rib.

Heat transfer predictions from the v?> — f and k — € models are shown in Fig. 5.
The comparisons are for the 2s simulations with p/fe = 9. As can be seen, heat
transfer predicted by the k — ¢ model is roughly half the heat transfer measured in
the experiment. Calculations by Iacovides (1998) utilizing the same k — ¢ low Re
number model and using a different p/e and e/Djy ratio also shows that the k — ¢
model predicts a Nusselt number distribution of about half the actual experimental
data. Since his calculations were computed for a rotating channel with different
geometrical ratios, using a different numerical method and different types of grids,
there can be no numerical issues in the discrepancies between the k — ¢ predictions
and experimental data.

In addition, Iacovides (1998) also calculated the flow using a Reynolds stress
model which is computationally more expensive than v? — f. The Nusselt number
predicted by the Reynolds stress model was better than the k — € calculations. Fig-
ure 5 indicates that the v2 — f model yields very good agreement with experimental
values.

In Fig. 6, heat transfer predictions using v? — f for different geometrical ratios
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FIGURE 5. Comparison of the Nusselt number distribution for the 2-sided
ribbed channel with p/e = 9 on the symmetry plane of the computational do-
main. v? — f turbulence model, —-— k — € 2 layer model, o experimental

data of Rau et al. (1998).
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FIGURE 6. Nusselt number distribution on the floor of the symmetry plane.
v? — f with 1s p/e = 9, o corresponding experimental data from Rau et al.

(1998), —-— v? — f with p/e = 6, o corresponding experimental data from Rau et
el. (1998).

are compared with the corresponding data from Rau et al. (1998). Experimental
data show that the heat transfer rate decreases with p/e ratio. The v? — f model
accurately reproduces this observation, both qualitatively and quantitatively. The
k — ¢ calculations are not shown in this figure, but the predictions are about half the
values obtained from the experiments. This is illustrated in Fig. 7, which shows the
average Nusselt number on the floor between the two ribs for different p/e ratios
computed here. The results show that the k — ¢ model consistently underpredicts
the heat transfer on the floor between the two ribs. The v? — f results are better
but still lower than the experimental data.
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FIGURE 7. Average Nusselt number on the floor of the computational domain.

v? — f, ---- v? — f for “reduced” domain, —-— k — ¢, o experimental data
from Rau et al. (1998).

It must be pointed out that the v — f results shown by the solid line in Fig. 7 are
the Nusselt numbers averaged over the whole area between the two ribs. Careful
observation of the experimental data shown in Figs. 5 and 6 indicates the first and
last experimental data points are approximately 0.5¢ away from the upstream and
downstream ribs respectively. The Nusselt number is quite low in the region close
to the ribs, and this brings down the average. Thus, a more accurate comparison
with experimental data would be to average Nu only in areas where experimental
data exist. We are currently in the process of obtaining these experimental data
from the group at Von Karman Institute where the experiment was carried out.
However, if the Nu was calculated using only an area which is 0.5 away from the
ribs and 1.0e away from the side walls, there is very good agreement between the
v? — f results and the experimental data. This is shown by the dashed line in Fig. 7.

Figure 8 shows the local Nusselt number distribution for both models on the side
wall. The maximum Nusselt number on the side wall is located at the first corner of
the downstream rib. The highest contour level for Nu/Nug using the k — € model
is 2.2 and for the v? — f model is 2.0. Experimental data shows that the maximum
contour level is 2.24. This initial observation might lead one to believe that the
k — e model gives better prediction on the side wall. A better way of determining
the performance of the models will be to compare the average Nusselt numbers on
the side wall. These data are shown in Fig. 9, and the v? — f prediction is closer to
the experimental data. However, it is clear that the side wall predictions are not as
good as the predictions for the wall between the ribs. Future studies will attempt to
find the source of this discrepancy. Similar to the data on the wall between the ribs,
there can be better agreement with experimental data if one averages only within
the area away from the corners of the computational domain. This is not done for
the side wall because it is unclear from the paper by Rau et al. (1998) how close to
the corners the experimental data on the side wall were taken. We are currently in
the process of obtaining this information.
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FIGURE 8. Nusselt number contours on the smooth side wall of the computational
domain computed using v? — f turbulence model (contour level is 0.3-2.0) (left)
and k — e turbulence model (contour level is 0.3-2.2) (right).
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FIGURE 9. Average Nusselt number on the smooth side wall of the computational
domain. v? — f, —-— k — ¢, o experimental data from Rau et al. (1998).

2.4 Results and discussion (blade tip)

The second set of simulations were performed to investigate the ability of the
v? — f model to predict heat transfer at the tip of a turbine blade. The resulting
flow fields for d/w = 0.1 and d/w = 0.2 are shown in Fig. 10. For d/w = 0.1, the
flow pattern is very similar to the one shown in Fig. 3. The flow separates at wall
A and reattaches on the floor. In the case of d/w = 0.2, the flow pattern changes
and the flow separates as it leaves wall A and reattaches, not on the floor, but on
the side of wall B. There is a slow mean recirculating region between walls A and
B similar to the driven cavity flow.

The heat transfer predictions on the floor between the two walls are shown in
Fig. 11. Similar to the case of the ribbed channel, the Nusselt number distribution
predicted by the k — ¢ model is too low. On the other hand, v?> — f gives good
agreement with experimental data. The agreement with experimental data is better
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FIGURE 10. Flow pattern for blade tip flow simulation using the v? — f turbulence
model. The figure on the top is for d/w = 0.1 and the figure on the bottom is for
d/w=0.2.

60

z/H

FIGURE 11. Nusselt number distribution on the floor for d/w = 0.1 (left) and
d/w = 0.2 (right). v? — f, —-— k — €, 0 experimental data of Metzger et al.
(1989). The experiment was repeated with three different inlet temperatures and
all measured data sets are shown in this figure.

for the flow with d/w = 0.2 than d/w = 0.1. It is interesting to note that the
experimental data with d/w = 0.1 shows a peak in the Nusselt number close to wall
B. The v? — f model reproduces this peak whereas data using the k — e model shows
a dip in the heat transfer.

Calculations were also carried out to assess the accuracy of using wall functions
with the k — ¢ model. The computations were done using a similar mesh to the
previous calculations. As wall functions are really only valid for approximately
yt > 30, the grid needs to be coarsened so that wall functions can be used. Grid
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FIGURE 12. Nusselt number distribution on the floor for d/w = 0.2. Calculations
performed with k — € model with standard wall functions. yt >3, e yt o~
5, yt---- 30, —-— y* ~ 50, o experimental data of Metzger et al. (1989).

lines closest to the floor were removed to ensure the distance from the first grid
line to the wall is increased. Four meshes were generated corresponding to average
yt along the cavity floor ranging from approximately 3 to about 50. Results from
these calculations are shown in Fig. 12 and compared with the experimental data.
As expected, the results are grid dependent for y* < 30, but surprisingly, the
calculations agree quite well with experimental data when y* a 3 or 5. When
yt =~ 30 or 50, the Nusselt number is underpredicted. In this case, the wall function
is a bit worse than the two layer model. This is despite the fact that there is a slow
recirculation region, and it is questionable whether a log law exists close to the wall
of the cavity.

3. Future plans

The results above and computations by Durbin (1993) and Behnia et al. (1997)
show that the heat transfer predictions by the v? — f turbulence model agree very
well with experimental data. To this end, the model has only been tested in a forced
convection environment, and it has been shown that the simple gradient diffusion
hypothesis with a constant turbulent Prandtl number is sufficient to obtain good
agreement with experimental data. However, buoyancy effects are not included in
the current model, hence v? — f cannot be expected to give good predictions in
situations where buoyancy plays an important role. Assuming that the Boussinesq
approximation holds, the source term due to gravity in the Reynolds stress transport
equation becomes

—Bgi (u;6) — By (ub).

Thus, to accurately model buoyancy effects, a good model for the turbulence heat
flux, (u;8), is needed. Future work will explore the feasibility of incorporating
buoyancy effects into v? — f by extending the algebraic heat flux analysis of Shabany
& Durbin (1997).
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A structure-based model with stropholysis effects
By S. C. Kassinos AND W. C. Reynolds

1. Motivation and objectives

The performance of Reynolds Stress Transport (RST) models is limited by the
lack of information about two dynamically important effects: the role of energy-
containing turbulence structure (dimensionality) and the breaking of reflectional
symmetry (stropholysis) due to strong mean or frame rotation. Both effects are
fundamentally nonlocal in nature and this explains why it has been difficult to
include them in one-point closures such as RST models. Information about the
energy-containing structure is necessary if turbulence models are to reflect differ-
ences in dynamic behavior associated with structures of different dimensionality
(nearly isotropic turbulence vs. turbulence with strongly organized two-dimensional
structures). Information about the breaking of reflectional symmetry is important
whenever mean rotation is dynamically important (flow through axisymmetric dif-
fuser or nozzle with swirl, flow through turbomachinery, etc.).

Engineering flows that must now be computed to advance technology require that
dimensionality and stropholysis effects be properly captured in one-point closures.
The information needed in order to address these issues is carried by new one-point
tensors whose definitions and transport equations were obtained in earlier work
(Kassinos and Reynolds 1994). Two of these tensors, the dimensionality D;; and
circulicity Fj;, characterize the energy-containing structure. Another tensor, the
third-rank fully symmetric stropholysis @y, parameterizes the breaking of reflec-
tional symmetry in the spectrum of turbulence. Reflectional symmetry breaking is
not properly captured in second-rank tensors such as the Reynolds stresses R;; or
even D;; and Fj;.

In our ongoing effort to construct one-point structure-based models for engineer-
ing use, we have in the past formulated a simplified nonlocal theory for the defor-
mation of homogeneous turbulence, the Interacting Particle Representation Model
or IPRM (see Kassinos and Reynolds 1996). The IPRM gives excellent results for
general deformations of homogeneous turbulence and has been helping us formulate
one-point models. A one-point model (the R-D model described in Kassinos and
Reynolds 1997) was formulated using the IPRM ideas and produces excellent results
for both rapid and slow irrotational deformation of homogeneous turbulence. The
R-D model cannot be applied to flows with strong mean or frame rotation because
it lacks important physics related to stropholysis Q*.

In the past year, we have formulated a new one-point model, the Q-model, which
is based on our understanding of the stropholysis effects and which uses the effective
gradients model from the IPRM (see Kassinos & Reynolds 1996) for the modeling
of nonlinear effects. For irrotational deformations the @-model is equivalent to the
previously formulated R-D model (see Kassinos & Reynolds 1997) and produces
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good results for both rapid and slow mean deformations. The ()-model overcomes
the restriction to irrotational deformation that applied to the previous model and
produces good results even for flows with combinations of strong mean rotation and
strain.

The development of the Q-model is an ongoing effort, and we expect that some
aspects of the model will eventually be modified, but this preliminary note sketches
the basic ideas.

2. Accomplishments

2.1 Why stropholysis-based models?

One-point models based directly on stropholysis transport have certain impor-
tant advantages. The stropholysis tensor contains information stemming from the
breaking of reflectional symmetry in the spectrum of turbulence that has undergone
mean rotation. This information is not contained in second-rank tensors such as
the Reynolds stress tensor or even the dimensionality D; ; and circulicity F;;. This
means that models based on these second-rank tensors, including standard Reynolds
Stress Transport (RST) models, must be supplemented with ad-hoc phenomenologi-
cal models in order to emulate even the leading order effects of stropholysis. The use
of ad-hoc models for stropholysis in these lower-rank models eliminates any hope
of achieving good realizability properties under non-equilibrium conditions. The
added computational cost for carrying a third-rank equation might be a reason-
able price to pay if stropholysis-based models can capture subtle rotational effects
while maintaining good realizability properties. The model described here is a first
attempt at exploring these ideas.

2.2 Definitions and constitutive equations

We introduce the turbulent stream function ¥, defined by
u:' = Eit-’q”a,t ‘I}:,i =0 \I/;,nn = _w£ ’ (1)

where u} and w| are the fluctuating velocity and vorticity components. The Reynolds
stress tensor and the associated nondimensional and anisotropy tensors are defined
by
Rij = ujuj = €ipgejes ¥} ¥, 4, ri; = Ri;/¢*, fij =15 — 365 (2)
Here ¢> = 2k = Ryx. Introducing the isotropic tensor identity (Mahoney 1985)
€ipg€its = 0ijOptdqs 1 8it6paby; + 8iabpjbgr — 6ijbpabyr — 6itbpjbgs ~ biabptbe;  (3)

one finds

Rij+ 0 W i+ 00— VL0 + 0, O = 6i5dP. (4)
e e e ”

Di; Fij Ci +Cji
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The constitutive Eq. (4) shows that one-point correlations of stream function gradi-
ents, such as the Reynolds stresses, are dominated by the energy-containing scales.
These correlations contain independent information that is important for the proper
characterization of non-equilibrium turbulence.

For homogeneous turbulence C;; = Cj; = 0, and the remaining tensors in (4)
have equivalent representations in terms of the velocity spectrum tensor E;j(k) and
vorticity spectrum tensor W;;(k). These are as follows:

e Structure dimensionality tensor

kik; .
D;; = / ~7 Bnn(k) &k dij=Dij/q®  dij = dij — 36i; (5)

e Structure circulicity tensor
Fo= [Fa0 &k fo=Fslet  Fi=fi= Yo (6)

Here F;j(k) is the circulicity s spectrum tensor, which is related to the vorticity
spectrum tensor W;;(k) = &0} through the relation

Fitt = Zlk),

The familiar rapid pressure—strain-rate term is given by
Tl] - 2Gta( 1ats + MJot:) (7)

where the fourth-rank tensor M is

kpk
Mipg = [ 232 By(k) k. (8)

We define the third rank tensor

Qijk = —uf¥l .. 9)
For homogeneous turbulence, Q;;x has the equivalent definition

Qijk = €ipgMjqpk (10)

where Mijp, is as in (8). The general definition of the third-rank fully symmetric
stropholysis tensor is given by

ng = (Quk + Q]kl + th] + thJ + Q_nk + Qk]x) (11)
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In the case of homogeneous turbulence both @;;x and Q;'J-k are bi-trace free
Qiik = Qiki = Qrii =0 Qji =0. (12)

A decomposition based on group theory shows that Q;;x and Q"-'jk are related to
each other and lower-rank tensors,

Qijk = $¢°€ijk + eikmBmj + L€jim Dk + Yexjm Fini + Qik » (13)

and
Rij = €¢impQmjp Di; = €impQpm; Fij = €impQjpm - (14)
2.1 IPRM formulation

Kassinos & Reynolds (1994, 1996) formulated a simplified nonlocal theory (Par-
ticle Representation Model or PRM) for the RDT of homogeneous turbulence. The
original idea was to represent the turbulence by an ensemble of fictitious particles.
A number of key properties and their evolution equations are assigned to each parti-
cle. Ensemble averaging produces a representation of the one-point statistics of the
turbulent field, which is exactly correct for the case of RDT of homogeneous tur-
bulence. In essence, this approach represents the simplest theory beyond one-point
methods that provides closure for the RDT equations without modeling.

The Interacting Particle Representation Model (IPRM) is the more recent exten-
sion of the PRM formulation that includes the effects of the nonlinear eddy-eddy
interactions, important when the mean deformations are slow. Unlike standard
models, which use return-to-isotropy terms, the IPRM incorporates nonlinear ef-
fects through the use of effective gradients. The effective gradients idea postulates
that the background nonlinear particle-particle interactions provide a gradient act-
ing on each particle in addition to the actual mean velocity gradient. An advantage
of this formulation is the preservation of the RDT structure of the governing equa-
tions even for slow deformations of homogeneous turbulence. A detailed account of
these ideas is given in Kassinos & Reynolds (1996, 1997) and will not be repeated
here. To a large extent, the one-point Q-model is based on the IPRM formulation.

The governing equations for the conditional (cluster averaged) IPRM formulation
are (see Kassinos & Reynolds 1996)

ni = —Giing + Gi .ngnen; (15)
Rj; = —GY%Ry; — GURyi + (Gl + Clml(Rimynan; + Rimnins)

In 2 |n (16)

-[2¢ R;; — C3 Ri(8ij — ninj)).
Here n;(t) is the unit gradient vector and Rl,; is the conditional Reynolds stress
tensor corresponding to a cluster of particles with a common n;(t). The effective
gradients are

n v

C C
G:; = G.] + Trikdkj G:J] = Gl] + Trikdkj . (17)
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where G;; is the mean velocity gradient. The constants C* and C" are taken to
be C™ = 2.2C"? = 2.2. The different values for these two constants account for the
different rates of return to isotropy of D;; and R;;.

The turbulent time scale 7 is chosen so as to produce the proper dissipation rate.
The rate of dissipation of the turbulent kinetic energy k = %qz that is produced by
the IPRM Eq. (16) is given by

CU
™M = o2~ riudimtmi - (18)
T

To complete the IPRM we use the standard model equation for the dissipation rate
(¢) with a rotational modification to account for the suppression of ¢ due to mean

rotation,

Here §); is the mean vorticity vector, and the constants are taken to be
Co =36 C,=30 and Cq =0.01.

We choose the time scale 7 so that éP®M = e. This requires that
¢
T = (?)C"rikdkmrmg ) (20)

The last term in (16) accounts for rotational randomization due to eddy-eddy inter-
actions. We require that the rotational randomization model leaves the conditional
energy unmodified. This requires that C; = C2, and hence using dimensional con-
siderations we take

85 . . _— .
C,=C = C22 = Q" fognpng Q= Q0% QF = €ipgrgkdip - (20)

2.9 The stropholysis equation

The most convenient method for deriving the slow Q equation is to use the
conditional (cluster averaged) IPRM formulation to obtain the evolution equation
for M and then contract the M equation with the alternating tensor €;;x to extract
the Q equationf. The PRM representation for Q and M is

Qijk = —(V2vjsink)  Mijpg = (Vwivjngny) (21)

where s; is the unit stream function vector. Hence using (15) and (16) and the
definitions (10) and (21) , one obtains

t To be precise, stropholysis is the fully symmetric subtensor Q*. Here we refer to the Q equation
as the stropholysis information since Q contains the (stropholysis) information found in Q*.
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dQijx
J
— = —GinQimk — GrkQijm — Gy €ita Mjmek — Goy€its Mjama

dt
» n 85 .,
+[Ghg + GuglQiqujk + 2G 3, Qijrgr — - O fra[Qijkrs + Qjikrs) -

(22)

2.8 Closure of the stropholysis equation

Closure of (22) requires a model for the tensor Qijkpq in terms of @Q,jk. Once
such a model has been specified, it effectively provides a model for M; jpg In terms
of Qi;x since M can be obtained from Qijkpg by a contraction with €ijk. For small
anisotropies, one can write an exact representation of Qijkpq in terms of Q;;x that
is linear in @;jx. Other tensors such as R;;, D;;, and F;; can be expressed in terms
of Qijx [see (14)] and need not be included explicitly in the model. Definitions
(contractions and continuity) determine all the numerical coefficients in the linear
model. Thus the linear model contains no adjustable parameters.

In the presence of mean rotation, rotational randomization is an important dynam-
ical effect that must be accounted for in the model. Rotational randomization is a
strictly nonlocal effect that is lost in the averaging procedure that generates one-
point statistics. Rotational randomization is caused by the differential action of
mean rotation on particle velocity vectors (Fourier modes) according to the align-
ment of the corresponding gradient (wavenumber) vectors with the axis of mean
rotation. The main impact of Fourier randomization on one-point statistics is the
damping of rotation-induced adjustments; here this effect is added explicitly through
a simple model,

DQ; )
gtﬂf =...- 71(Qijk - Qifk) - 72 Gijm(Rmk - Dmk) — 73 6z'l:m(vaj - ij) .
(23)

The first term accounts for the rotational randomization effects in rotation dom-
inated flows while the remaining two terms account for the modification of these
effects due to the combined action of mean strain and rotation. Here 71, 72 and
73 are scalar functions of the invariants of the mean strain and rotation and are
determined from simple test cases. A detailed discussion of these models will appear
separately.

2.4 Representative results for homogeneous turbulence

Examples of the performance of the new, one-point Q-model for irrotational mean
deformation are shown in Figs. 1 and 2. A particularly interesting test case is that of
homogeneous turbulence deformed by slow axisymmetric expansion (axisymmetric
impingement). The mean velocity gradient tensor in this case is

-1 0 0
2 1
5,’,‘—\—/_55' g S (l) , S—\/S{jS,‘j/?. (24)
2
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FIGURE 1. Comparison of the one-point Q-model predictions (---- ) with the

IPRM results ( ) and the 1985 DNS of Lee & Reynolds (symbols) for the ax-
isymmetric expansion case EXO (Sq?/e, = 0.82). (a)-(c) evolution of the Reynolds
stress, dimensionality, and circulicity anisotropies; 11 component (e ), 22 and 33
components (¥). (d) evolution of the normalized turbulent kinetic energy (e ) and
dissipation rate (¥).

As was discussed in Kassinos & Reynolds (1996, 1997), the axisymmetric expansion
flows exhibit a paradoxical behavior where a slower mean deformation rate produces
a stress anisotropy that exceeds the one produced under RDT for the same total
mean strain. This effect is triggered by the different rates of return to isotropy in
the ¥ and d equations, but it is dynamically controlled by the rapid terms. The net
effect is a growth of T in expense of d, which is strongly suppressed. The one-point
model (see Fig. 1) is able to capture these effects well and also predicts the correct
decay rates for the normalized turbulent kinetic energy k/k, and dissipation rate
¢/€,. The predictions of the one-point @Q-model are comparable to those of the
nonlocal IPRM.

The case of homogeneous turbulence deformed by slow plane strain (S¢2/e, = 1.0)
is shown in Fig. 2. In this case the mean strain tensor is
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FIGURE 2. Comparison of the one-point @Q-model predictions (---- ) with the

IPRM results ( ) and the 1985 DNS of Lee & Reynolds (symbols) for the
plane strain case PXA (Sq¢?/e, = 1.0). (a)-(c) evolution of the Reynolds stress,
dimensionality, and circulicity anisotropies; 11 component (s ), 22 component (W),
33 component (a). (d) evolution of the normalized turbulent kinetic energy (¢ ) and

dissipation rate (v).
0 0 ©
Si;=8S{0 -1 0 ]. (25)

0 0 +1

Again the performance of the one-point model is comparable to that of the IPRM,
and its predictions compare favorably with the DNS results of Lee & Reynolds
(1985). The details in the evolution histories of 7;;, di; and f;; are captured, and
the correct rates are predicted for the decay of the (normalized) turbulent kinetic
energy k/k, and dissipation rate €/e,.

The predictions of the one-point -model for the case of homogeneous shear are
shown in Fig. 3. Comparison is made to the DNS results of Rogers & Moin (1987).
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FIGURE 3. Comparison of the one-point Q-model predictions (lines) and the

1986 DNS of Rogers & Moin (symbols). (a)-(c) evolution of the Reynolds stress,
dimensionality, and circulicity components in homogeneous shear with Sqoz/ € =
2.36: 11 component, ( , ©); 22 component, (=---, ¢); 33 component,
(—-— 0); 12 component, (--=- ,, ¢). (d) evolution of production over dissipation

rate (P/e¢): model, (===-); IPRM, ( ); DNS (m).

Note that the model produces satisfactory predictions for the components of r;; =
Ri;/¢%, di; = Dij/q%, fij = Fij/q*. A fully-developed stage was reached in the
simulations for 10 < St < 15, and in this range both the Q-model and the IPRM
predict the correct level for the dimensionless ratio of production over dissipation,

Ple.
A difficult challenge for one-point models is provided by the elliptic streamlines
flows (see Fig. 4),

0 0 —y—e
Gij = 0 0 0 0<lel <l (26)
vy—e O 0
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FIGURE 4. Comparison of model predictions (lines) for the evolution of the

Reynolds anisotropy in elliptic streamline flow (E=2.0) with the 1996 DNS of Blais-
dell (symbols). (a) one-point @-model vs DNS, (b) IPRM vs DNS: 11 component,
( , 0 ); 22 component, (----, v); 33 component, (---- , 0); 13 compo-
nent, (—-—, ¢). Growth of the normalized turbulent kinetic energy: (c) one-point
@Q-model (line) vs DNS (symbols), (d) IPRM (line) vs DNS (symbols).

which combine the effects of mean rotation and plane strain and emulate conditions
encountered in turbomachinery. (Note that the case e = 0 corresponds to pure
rotation while the case |e| = |y| corresponds to homogeneous shear).

Direct numerical simulations (Blaisdell & Shariff 1996) show exponential growth
of the turbulent kinetic energy in elliptic streamline flows, which analysis shows
is associated with instabilities in narrow wavenumber bands in wavenumber space.
Standard k-¢ models as well as most RST models instead predict decay of the
turbulence.

As shown in Fig. 4, both the one-point @-model and the IPRM predict exponen-
tial growth of k. The rate of growth of k predicted by the one-point model is lower
than those predicted by the IPRM and DNS but probably satisfactory for most
purposes. In addition, the one-point model predicts the details of the evolution of
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FIGURE 5. Comparison of model predictions with DNS (Mansour, 1998) for

fully developed channel flow at Re, = 395. (a) components of the Reynolds stress

tensor, (b) components of the Reynolds stress tensor normalized by its trace: model,

( ); DNS (=== ). (c) mean velocity profile, (d) dissipation rate profile: model,

(— ); DNS, (D).
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the Reynolds stress anisotropy components with a level of accuracy comparable to
the IPRM, which again seems adequate for many engineering purposes, especially
since none of the currently available k-¢ and RST models can predict the elliptic
streamlines flows at this level of accuracy and detail.

2.5 Eztensions to inhomogeneous flows

The Q-model has been implemented in a 1D code and is currently being tested for
fully developed channel flow. Inhomogeneous effects are accounted for through the
addition of standard gradient diffusion models in the Q;;x and € equations. In other
words in the evolution equations for the turbulent statistics, we allow for tu